USER GUIDE V-1

Beam Propagation Method

Simulator
User Guide

SV

SemiVi LLC

Zollikon, Switzerland.

October 11, 2025

Contents

1

M1 Features o oot 1
(.2 Installationl, 2
1.3 ICENSING| e e 2
I1.3.1 Purchasing the licenses| 3

[1.3.2 Installation of SemiVi-activator] 3

3.3 License activationl 3
[2_Theory of [Beam Propagation Method (BPM)| Solver| 5
2.1 erivation of [BPM[Equation] 6

2.2 Vectorial IBPM[Solver] 7
2.3 Scalar[BPMlSolverl 8
[2.4 " Solving |BPM|on Finite Ditterence Grid | 8

13 Configuration File Structure| 11
3.1 File Sectionl 13
3.2 Solver Sectionl 14
3.3 Source Sectionl L. 14
[3.4 Boundary Section|. 15
3.5 Plot Sectionl L. 15
[3.6 Running Mode Calculation| 15
(3.7 Output Files| 17

4 Configuring BPM Solver| 19
4.1 Keywords in File Section|. 19
[4.2 Keywords in Solver Section| 20

3

CONTENTS

Available Settings in [BPM|[solver|

4.3 Keywords in Source Section|
(A4 Keywords in Boundary Section]

]

Iélsi l l!z‘ :‘!s:! li!llll
4.6 Miscellaneous Comments|.
4.6.2 Selecting Numeric Method For Mode Solver] . .
Python Interface]
.1 Import modules|.
0.2 Constructors]
b.3 Setup thesolver|.
0.3.1 setGlobalParameters|
setDomainBoundary|
resetDomainBoundaryToReflective|
3.4 addbourcelo
removeSource]o e e
5.4 Solve[BPM|System|
portToGPUlo
solveSystem|
.o Retrievedatalo o000
etoavedQuantitiesNames|
5.0.2 get avedQuantitiesData]
5.5.3 getSavedQuantityDatal
6.1 Quantities| o
6.2 Visualizationl

|IA Notation and Acronyms|

Acronyms

33
33
34

35

Chapter 1

Introduction

[BPM] solver in Optosolver package is used to calculate
[Envelope (SVE)| of all the components of electric field and magnetic
flux along the waveguide by using BPM]| method. Both 2D and 3D
waveguide structures can be provided as inputs.

[BPM] solver uses Mode solver in Optosolver package internally for
necessary mode calculations to get effective waveguide index.

1.1 Features

[BPM] solver supports materials with constant real and imaginary
permittivity. If the material config file contains wavelength vs. re-
fractive index table, then wavelength dependent real and imaginary
permittivity can be used as well.

BPM] solver also supports bidirectional [BPM] calculations which
can be used to calculate reflection coefficient. This support is on
experimental basis only.

[BPM] solver stores [SVE] of all the components of electric field and
magnetic flux in an hdf5 file. An xdmf script file is also created for
visualizing the results in paraview.

1

2 CHAPTER 1. INTRODUCTION

1.2 Installation

SemiVi currently supports software installation on various Linux
distributions. The software installer is available in Debian package
(*.deb file) and in RPM format (*.rpm file).

Note, that if you have downloaded mkl version of the OptoSolver,
the following package needs to be installed manually by you before
installing the circuit solver from the installer package.

o Intel math kernel libraries (released in 2020 or later), which
include distributions of open-mp, pardiso, etc. specific for Intel
Processors.

The OptoSolver sources mkl functions from the above installation.
These functions can offer speed-up in the calculations on Intel proces-
sors. The mkl package can be downloaded from Intel website.

If the OptoSolver without mkl-acceleration is downloaded, then
installation of the above package is not necessary.

Once the above package is installed, download the installer on
the local machine. The installer file named optosolver_amd64.deb
will appear in the Downloads directory. Go to the directory using cd
command. Use the following command to install the OptoSolver from
the installer.

>> sudo apt install ./optosolver_amd64.deb

Alternately, one may use dpkg to install the software and use apt
to install missing dependencies as follows.

>> sudo dpkg -i ./optosolver_amd64.deb
>> sudo apt install -f

You need to have root access to install the software on your
machine.

1.3 Licensing

Two types of licenses can be purchased for SemiVi[BPM] solver.

1.3. LICENSING 3

Node-locked licenses enable unlimited number of simultaneous
executions of the BPM] solver on the client machine. The node-locked
license limits the usage of the [BPM] solver only to the machine on
which the license is activated.

With server licenses, the BPM] solver can be run on any of the
machines in the client organization on which the server license is acti-
vated. However, only the specified number of simultaneous executions
are possibie at a time.

1.3.1 Purchasing the licenses

The clients can place order for any of the above licenses on SemiVi
website |(https://www.semivi.ch/sales) or by contacting our sales-
person.

We will process the request and send the license files by email. The
license files need to be activated on the desired machines using the
license key which is emailed separately using the following command.

1.3.2 Installation of SemiVi-activator

The license file must be activated on the desired computer before use.
For that purpose, download the installer semivila_amd64.deb file on
the local machine and install it as follows.

>> sudo apt install ./semivila_amd64.deb

1.3.3 License activation

To activate the license file, please run the following command.
>> semivila -a File.lic <Server|NodeLocked>License.lic\\

Replace File.lic with the your license file, and use appropriate
name for the activated file. You will be prompted to input the
16 digit license key. A successful activate of the license file will
generate the activated license file. Copy the activated license file to the
/opt/semivi/licenses/ folder and rename it to ServerLicense.lic
or NodeLockedLicense.lic for server and node-locked licenses respec-
tively. If you have more than one license files, please delete the older

https://www.semivi.ch/sales

4 CHAPTER 1. INTRODUCTION

expired license files. If you wish to keep more than one active license
files, you can also name the license files as <i>NodeLockedLicense.lic
where <i> could be from 0 to 49. For ex. 49NodeLockedLicense.lic
or 49ServerLicense.lic. The program will read the license files and
lock the first available license. All the target users must have read
rights on the license file.

User-guides of all the software provided by SemiVi are stored at
the location /opt/semivi/userguides/.

Tutorials of all the software provided by SemiVi are stored at the
location /opt/semivi/tutorials/optosolver.

Chapter 2

Theory of BPM]| Solver

Maxwell’s equations in non-homogeneous media without free charges
and free currents are given by,

v-ﬁ:o,v-é:o,vXéz—a—B,Vxﬁz% (2.1)

Here, D=cisa displacement vector, £ is an electric field, H=58 /

is the magnetic flux, and B is the magnetic field. Applying curl to
the third Maxwell’s equation, [Right Hand Side (RHS)| of the third
equation is simplified as,

OV x B OV x H 8D 2E 22)
—— = = = = —lf——. .
ot o Worr = Hop
In the above simplification, we have assumed that p is spatially
homogeneous and both € and p are time-independent. The complete

equation can now be written as a function of £.

02€

VXVX(‘;:—MGW

(2.3)

deals with propagation of monochromatic light in the waveg-
uide. &£ due to the monochromatic light can be written as

E(F) = E(F) exp(iwt). (2.4)

5

6 CHAPTER 2. THEORY OF SOLVER

Substituting this in Eq. and using V x V x E = V2E — V(V - E)
we get, ~ ~ ~
V2E -V(V-E)+n?kiE =0 (2.5)

In [BPM] implementation, mode is set to propagate in x- direc-
tion. Splitting V operator and E into transverse and longitudinal
components, we get

E(7) = Eo(7& + By(7)j + E.(7)2 = B (M2 + E(7) (2.6a)

0 0. 0 0
V= %x + 87y @Z = %x + Vi (2.6b)

Using the above notations, and separating Eq. into transverse
and longitudinal components, the transverse component can be written
as,

_ OF, q
VzEt - Vt(Vt . a) + TLQk‘gEt =0 (27)
. Using Poisson equation, and assuming 8”, ~ 0,
= - 0F, on?
V- (n*E) =V, (n’E 2 =0
(n"E) ¢+ (n"Ey) or * o
OE V- (n*E Vin? o S
8; _ Ve 7(12) _ 7;2 B, -V, E (2.8)
Substituting Eq. 2.8 to Eq. [2.7] we get,
02} on? - -
5 2E, + V, [t Et} +n2kiE, =0 (2.9)

2.1 Derivation of BPM]| Equation

In a waveguide, rapid variation of the transverse fields is the phase
variation due to propagation along the guiding axis. Assuming this
guiding axis mainly along x-direction, one can define a [SVE] of the
transverse E; as follows,

Ey = By + E.2 = U, exp(—inokoz)j + V. exp(—inokoz)2. (2.10)

2.2. VECTORIAL SOLVER 7

The above equation can be used to calculate 682 fzt in Eq.
0?E, B [82\Ily

v
- 2inokoh - ngkgllly} exp(—ingkoz) (2.11)

ox2 | Ox? oz
[SVE] approximation is given below,
0%V . ov
‘ c%;‘ < 2m0k08—xy. (2.12)

Similar set of equation can be written for calculating 8(; wE; . Substitut-

ing |SVE]| of E, given by Eq. 3;% and expressions for 882 f;z given
by Eq.[2.11]in Eq. 2.9 we get
ov, 9*v, N o*v, 0 [1 8(n2)\11 1 a(nQ)\PZ}

or oy? 022 Oy |n2 oy Y n? 0z
+ kg (n* — nd)W, (2.13a)
ov, 0%V, 0%V, 0 { 1 9(n?) N 18(712)\112]

2i7’L() ko

2inok - A
oo TG Oy? + 022 +8z n2 9y Y n? 0z

+ k2 (n? —nd)W, (2.13b)

Eq. form the equations used for propagating the mode along x
direction.

2.2 Vectorial Solver

When ¢ of the waveguide structure is strongly inhomogeneous, coupling
terms in Eq. 2.T3|between both W, and ¥, cannot be ignored. Eq.
and Eq. 2.13a] need to be solved together for mode propagation. This
is performed by Victoria’s BPM] solver. In this solver, once [SVE] of
electric fields at x = 0 (¥, (0, y,) and ¥, (0, y, 2)) are set, the following
equation is solved to obtain their values at all > 0.

O Wy Zi By By Ty (2.14)
ox \I/Z 2n0k0 sz Pzz \I/z '

where each individual operator is given below,

L9 10 2 W,

8 CHAPTER 2. THEORY OF SOLVER

.9 18 , P
v = 55~ 5o (2.15b)
. 919 , >

L9 910 . W,

o = oy E(ﬁﬁz)—l—C—Q(n —ng) (2.15d)

2.3 Scalar Solver

When one component of the transverse field is dominant over the other
component and effective index differences are small among different
regions, then one may 1gnore . If Polarization is set to
Magnetic (TM)], ¥ is the domlnant field. If Polarization is set to
Transverse Electric (TE)| ¥, is dominant. If ¥, is dominant over ¥,
the mode equation can be written as,

%\py = ﬁ (2.16)
where the operator P is given by,
P= 3822 6‘922 + k2(n? —nd) (2.17)
2.4 Solving on Finite Difference Grid
In vectorial 3D [BPM]solver, the operator P =]?yy in Eq.[2.14
ey Paz

has been discretized on a cubic grid at each YZ cross-section along x
direction. In scalar 3D solver or 2D solver, the operator P
in Eq. [2.16) has been discretized on the cubic or rectangular grid at
each YZ cross-section. On discretization, P becomes a square matrlx
P and [SVE| of fields ¥, (z) and ¥ (z) become vector ¥ (z). Eqs.
and [2.16] are discretized along x direction.

v, —v, 1 —1i

dx B 2noko [Py - Uy + (1 =)Py - Uiy a] - (2.18)

2.4. SOLVING ON FINITE DIFFERENCE GRID 9

where ¥,,, and ¥,,_; are discretized SVE|at = z; and @ = 2;_1,
respectively. The term on the [RHS] results from Crank-Nicholson
discretization scheme, where a € (0.5,1.0] ensures stability of the
scheme. To minimize discretization error, it is advisable to set « as
close to 0.5 as possible. Simplifying the above equation gives,

i(1—a)- dx
2n0k0

Pm—l . \IlnL—l (219)

I io - dx
2n0k0

Pm} T, = {14-

Note, that [RHS|of the above equation is known since ¥,, _; has already
been calculated or set from the external source. At every x = x,y,
Eq. is solved to calculate ¥, from P,,, P,,_1, and ¥,,_; at
T =Tm—1-

Chapter 3

Configuration File
Structure

Optosolver software reads various inputs from a [BPM] solver configu-
ration file and calculate the [SVE] of the mode propagating along the
waveguide. In [BPM] solver, the waveguide is always assumed to be
traveling along X-axis. The mode is assumed to be in YZ plane. In
2D, the modal fields are assumed to be uniform along Z-axis. The
[BPM] solver is executed by using the following command —

>> OptoSolver bpmsolver bpmSiWG_dev.cfg

In the above command, the word after Optosolver is the name
of the program to be executed (in this case — bpmsolver). The
program name is followed by the configuration file name (in this

case — bpmSiWG_dev.cfg). A sample configuration file of the
solver is provided below.

File:

{
Device = "bpmSiWG_str.cfg";
Out = "SiWG";

}

11

12 CHAPTER 3. CONFIGURATION FILE STRUCTURE

Solver:

{
Simulation = "BPM"; // Alternates: "Bi-BPM"
Equation = "Scalar"; // Alternates: "Vectorial"
Polarization = "TM"; // Alternates: "TE"
Settings = ["UsePowerMethod"];

Wavelength = 0.9;

Effectivelndex = 3.5;
DecayConstant = 0.1;

InterfacesX = [-0.5, 2.5];
BidirectionalDecayFactor = 1E-2;
BidirectionalTolerence = 1E-3;
Bidirectionallterations = 10;

}
Sourcexleft:

{

Type = "Mode";

CoordinateXCut = -4.5;
Intensity = 1000;

}

Source*mid:

{

Type = "Mode";

CoordinateXCut = -2.;
Intensity = 1000;
}

Boundary*ybdr:

{
Axis = ["y", "Z"];
Model = "PML";
PMLLayers = 5.;
sigmamax = 1.;

3.1. FILE SECTION 13

Plot:
{
Quantities = ["AbsElectricField",
"AbsReverseElectricField",
"ElectricFieldZ"];

The above config file is composed of various sections which define
the solver settings, types of sources, domain boundaries, the quantities
to be plotted. In the config file, the string before "*’ gives the section
type, whereas the string after *’ specifies the name of the section.
Various keywords in each of the section and their functionality is
shortly described below.

3.1 File Section

The keyword Device provides the file name from which the device
structure is created. Internally, the file is processed differently accord-
ing to its extension.

e If the file extension is “str.cfg”, the file is processed as an input
file for the tensor mesh generation.

o If the file extension is “str.h5”, The file is read as hdf5 file
generated by the structure and tensor mesh generator.

The keyword Out sets the prefix to the output file name. In this
case, the output files will be called ‘SiIWG_bpm.xdmf” and ‘SiWG -
bpm.h5’. Also, the mode solver used to calculate modes at various cross-
sections in the device also stores the modal quantities in ‘SiWG _Xloc_-
<xid>_mode.xdmf” and ‘SiWG_Xloc_<xid>_mode.h5’. Here, <xid>
represents index of X coordinate at which the mode in the YZ plane
is calculated.

14 CHAPTER 3. CONFIGURATION FILE STRUCTURE

3.2 Solver Section

This section lists the information needed for the [BPM] solver apart
from the device structure. This information is also passed on to the
mode solver. For example, mode polarization is required, when the 2D
”Scalar” laser equation is solved or 1D laser equation is solved. The
keyword “Wavelength” provide wavelength (in pm) of propagating
light in the waveguide. Initial effective index around which the modes
are searched is given by the keyword “Effectivelndex”. “DecayConstant”
sets imaginary part of the effective index. The rest of the quantities
required for the mode calculation are set to their default values. Results
of mode calculation, such as mode effective index and mode profile, are
used for the calculation of SVE] of electric field along the waveguide.

Various flags are provided as a list of comma-separated strings with
the keyword “Settings”. In the above file, the keyword “UsePower-
Method” is listed. Therefore, a faster ‘power method’ is used for mode
calculation.

Exactly one ‘Solver’ section must be present in the config file.

3.3 Source Section

Multiple sources with different names can be instantiated in a config
file.

In the given config file, two sources have been instantiated. They
are named, ‘left’ and ‘mid’. It specifies the type of the source (keyword
‘Type’), location of the source along x-axis (keyword ‘CoordinateX-
Cut’), and its intensity (keyword ‘Intensity’).

Currently, only ‘Mode’ type source is available. When mode type
source is specified, mode calculations are performed on YZ cross-section
of the device at the x-coordinate set by ‘CoordinateXCut’ These
mode calculations yield electric field and magnetic flux normalized to
integrated power of 1 Watt. It is scaled with the intensity specified with
the keyword ‘Intensity’. The scaled modal electric field is then added
to the SVE] of forward propagating electric field at the x-coordinate of
the source.

3.4. BOUNDARY SECTION 15

3.4 Boundary Section

Multiple ‘Boundary’ sections with different names can be instantiated
in a config file.

In the given file, a boundary section modeling ‘PML’ boundary
type has been instantiated. This model is applicable along the planes
at the boundary perpendicular to the axes given in the list with the
keyword ‘Axis’ In this case, since the keyword ‘Y’ is specified, the
model is applicable at the layers in XZ plane at both maximum and
minimum y boundaries. Separate boundary models can be applied at
+Y or -Y axis by using the keywords ‘Ymax’ and ‘Ymin’, respectively.
Boundaries perpendicular to Z axis are modeled in the same manner.

For ‘PML’ type boundary, the number of absorbing PML layers
at the boundaries are specified with the keyword ‘PMLLayers’. Also,
absorption coefficient at the innermost layer is given with the keyword
‘sigmamax’. Absorption coefficient decays polynomially towards the
outermost layer.

Separate boundary sections must be used for instantiating different
boundary models. Following boundary models are recognized by
the BPM] solver — 1. [Perfectly Matching Layer (PML)| 2. [Absorbing|
[Boundary Condition (ABC)| 3. [Reflecting Boundary Condition (RBC)|
4. [Periodic Boundary Condition (RBC)l By default, boundaries along
non-propagating axes are assumed to be reflecting. Boundary along
the propagating axis ‘X’ is specially treated as described in the theory.

3.5 Plot Section

Exactly one plot section must be instantiated per config file. The
keyword ‘Quantities’ lists the quantities that must be saved in an hdf5
file as a list of string. [SVE] of these quantities are calculated in the
[BPM] solver by propagating the mode along X axis.

3.6 Running Mode Calculation

In this section, the above config file is used to perform mode calculations
on a lateral 2D cross section of a waveguide shown in Fig. [3.I] The
waveguide is aligned along the lateral direction (X-axis). It is invariant

16 CHAPTER 3. CONFIGURATION FILE STRUCTURE

Figure 3.1: Structure of the lateral cross-section of the simulated
waveguide along X axis. The waveguide is invariant in Z direction
normal to the plane of the figure.

along Z dimension (normal to the plane of the figure). The waveguide
structure can be created using the command

>> (OptoSolver str bpmSiWG_str.cfg.

It is not necessary to generate the structure before simulating it.
The config file for generating the structure (‘modeSiWG_str.cfg’) can
be specified as Device in File section of the mode solver config file
modeSiWG _dev.cfg’. The solver internally generates the structure
and passes it to the [BPM]solver. The structure config file must also
be present in the same folder. Once the config file is set, the [BPM]
calculations can be performed using the following command

>> (OptoSolver bpmsolver bpmSiWG_dev.cfg

The calculations will generate and xdmf file (extension
*.xdmf) together with an hdfb file (extension *.h5).

3.7. OUTPUT FILES 17

3.7 Output Files

The keyword Out in the File section of the config file sets the prefix
to the output file name. In this case, the output files are called
‘SiWG_bpm.xdmf’ and ‘SiWG_bpm.h5’. Note, that the xdmf file is
simply an XML script which provides additional information on various
datasets stored in the hdf5 file for visualization purpose. If Paraview
is installed on the machine, the xdmf file can be opened using the
following command

>> paraview SiWG_bpm.xdmf

In paraview, various quantities listed in the Plot section such as,
X, Y, and Z components of [SVE] of electric field and magnetic flux
along the waveguide can be selected for visualization. Fig.[3.2] plots
electric field in Z-direction and magnetic flux in Y-direction. The
horizontal axis is X-axis and the vertical axis is Y-axis. Note the
increased electric field at © = —4.5um and —2.0um due to the modal
sources present at those locations. Also, scattering of light from the
waveguide into oxide cladding is observed as the mode propagates from
a thicker Silicon waveguide into a thinner one.

18 CHAPTER 3. CONFIGURATION FILE STRUCTURE

— 4.5e+04
— 30000

& 20000
10000
(0]

£ -10000

- -20000

ElectricFieldZ

-3.9e+04

(a) Electric Field

>
x
2
[
Q
=
0]
=
o
o]
=

(b) Magnetic Flux

Figure 3.2: Calculated [SVE] of electric field along Z direction and
magnetic flux along Y direction of the waveguide in Fig. [3.1] are shown
in the figures above. Note, that the fields are invariant in Z direction
normal to the plane of the figure.

Chapter 4

Configuring BPM Solver

An example configuration file provided in Chapter [3| lists typical
configurations of BPM]solver. In [BPM]solver, the waveguide is always
assumed to be propagating the beam along X-direction. The beam is
generated by the uni-modal source specified by its X-location. Mode
Solver is used internally to calculate modal electric fields and magnetic
fluxes along the waveguide cross-section at X-location of the source.

In the chapter, a list of all the available configurations in the
[BPM] solver and their usage information is provided. For clarity, the
keywords are listed section-wise. The mandatory keywords are marked
‘mandatory’. Optional keywords are provided with the default input
values.

4.1 Keywords in File Section

Following keywords must be listed in File section of[BPM]solver config
file.

o Device: (Mandatory) Specify either a config file for structure
generation or a saved mesh file in hdf5 format.

e Out: (Mandatory) Specify prefix of the output xdmf and hdf5
files. The output files are named ‘<out>_bpm.xdmf” and ‘<out> _-
bpm.h5’; where ‘<out>’ is the string input by user in Out.

19

20 CHAPTER 4. CONFIGURING BPM SOLVER

4.2 Keywords in Solver Section

Following keywords may be listed in Solver section of [BPM] solver
config file. The BPM] Solver is configured using these keywords.

o Wavelength: (Mandatory) Wavelength of all the sources is
specified in the units of pum.

o EffectivelIndex: (Mandatory) Effective refractive index of the
waveguide around which the waveguide modes are searched at
the source locations and the X-locations listed in InterfacesX.
Effective index of the propagating fields at any location in the
waveguide is set to the mode effective index of the nearest source
or interface which comes before the given location.

e DecayConstant: (Mandatory) Initial value of the decay constant
of the waveguide. When complex mode equation is solved,
waveguide modes are searched around complex effective index
n' = n + kt where n and k stand for the effective index and
the decay constant respectively. Complex effective index causes
decay of field amplitudes along propagation direction.

e Polarization: If a 2D device is simulated or if a 3D device
is simulated with the scalar mode equation, polarization of the
mode must be specified. Polarization can be ‘TE’ or ‘TM’,
which stand for ‘Transverse Electric’ or ‘Transverse Magnetic’,
respectively. Default value is ‘TE’.

e Equation: If a 3D device is simulated, mode calculations are
performed along YZ-plane of the waveguide. In this case, either
‘Scalar’ or ‘Vectorial’ mode equation can be solved for mode
calculations as well as propagation using [BPM] Equation can be
either ‘Scalar’ or ‘Vectorial’. Default value is ‘Scalar’.

e PowerMethodTol: Applicable only when power method is used
for mode calculations along waveguide cross-section. When
difference between the eigenvalues between successive iterations
is less than the tolerance then the calculations are terminated.
Default value is 1073,

4.2.

KEYWORDS IN SOLVER SECTION 21

PowerMethodMaxIter: Maximum iterations for mode calcula-
tions using the power method. Applicable only when power
method is used for mode calculations. Default value is 50.

Settings: Various flags are set by providing a list of appropriate
keywords as comma-separated strings as follows.

SolverSettings = ["UsePowerMethod",
"WavelengthDepIndex"];

Simulation: Specifies the type of [BPM] simulation to be per-
formed. Following types of [BPM]simulations can be performed.

1. BPM: Performs forward propagation of the waveguide.
2. Bi-BPM

BidirectionalDecayFactor: In Bidirectional BPM]calculations,
reverse electric field is multiplied with BidirectionalDecayFactor
and propagated backward. Default value is 1072.

BidirectionalTolerence In Bidirectional [BPM] calculations,
forward and reverse propagation are iteratively performed. When
the ratio of reverse electric field to the forward electric field at the
end of forward propagation is less than BidirectionalTolerence,
the iterations end. The iterations also end, if the ratio does not
change between successive iterations. Default value is 1073.

Bidirectionallterations: Specifies maximum number of iter-
ations of forward and reverse propagation in Bidirectional [BPM]
Default value is 10.

InterfacesX: Specifies a list of x-coordinates at which the
waveguide discontinuities or interfaces between two different
waveguides exist. The x-coordinates are listed in the following
format.

InterfacesX = [-0.5, 5.0, 10.];

22 CHAPTER 4. CONFIGURING BPM SOLVER

Note, that the Mode solver, which is internally used for mode
calculations at the source locations, is also configured from the relevant
keywords listed in the Solver section of solver config file.

4.2.1 Available Settings in [BP M| solver

Keywords which may be listed in the field Settings to set certain
flags in the mode solver are listed below. Note, that they are listed in
the decreasing order of priority. In the case of a conflict, the upper
keyword has higher priority over the lower keyword.

1. WavelengthDepIndex: Real and imaginary dielectric constants
are determined from the table of wavelength dependent complex
refractive indices specified in the material config file. Linear
interpolation is used if the wavelength is not in the list. If
the wavelength is outside of the table range, then the dielectric
constants are set to smallest/largest frequency

2. UsePowerMethod: Power method is used for mode calculations,
else Arpack routines are used.

3. Absorption: Complex refractive index of the materials is used
for mode calculations, and the modes with complex index are
calculated. At the moment, Arpack routines give error, if this
keyword is used.

Note, that priority of the keywords does not depend on their order
in the list supplied with Settings.

4.3 Keywords in Source Section

In the config file, the source section is instantiated by the name
‘Source*<name>’, where <name> is the name of the source. Multiple
sources with different names can be instantiated in a config file.
Following keywords can be defined in Source section.

e Type: Currently only the source of the type ‘Mode’ is supported.
The ‘Mode’ type source performs Mode calculations to determine
electric field distribution in the cross section. Default value is
‘Mode’.

4.4. KEYWORDS IN BOUNDARY SECTION 23

o CoordinateXCut: (Mandatory) Specifies x-coordinate at which
the source is present.

o Intensity: (Mandatory) Specifies intensity of the mode source
in the units of “W/ tmm?.

4.4 Keywords in Boundary Section

In the config file, a Boundary section is instantiated by the name
‘Boundary*<name>’, where <name> represents the boundary name.
Multiple boundary definitions with different names can be instantiated
in a config file. Following keywords can be defined in Boundary section.

o Axis: Current boundary definition is applied to the list of
boundaries specified by Axis. Available sets of boundary names
are —

Ymin: X7 boundary at the smallest y-coordinate.

Ymax: XZ boundary at the largest y-coordinate.

Y: XZ boundary at both the smallest and largest y-coordinates.

Zmin: XY boundary at the smallest z-coordinate.

Ul W e

Zmax: XY boundary at the largest z-coordinate.

6. Z XY boundary at both the smallest and largest z-coordinates.
The Axis are listed in the following format. Axis = ["Ymin", "Ymax", "Z"];

e Model Boundary type to be applied to the current boundary
condition. Following boundary models are recognized by the
[BPM]solver — 1.[PMT]2.[ABC|3.[RBC|4.[RBC] Separate boundary
sections must be used for instantiating different boundary models.
By default, boundaries along non-propagating axes are assumed
to be reflecting. Boundary along the propagating axis ‘X’ is
specially treated as described in the theory.

o PMLLayers Number of [PMI]layers at each boundary. Note, that
no user-defined object (excluding the ‘Gas’ box which defines

simulation domain) must intersect these boundary layers. Only
applicable for [PMI] boundary model.

24 CHAPTER 4. CONFIGURING BPM SOLVER

 sigmamax Value of absorption coefficient in consecutive [PMI]
layers increases polynomially with their distance from the in-
nermost layer. sigmamax specifies maximum value of the the
absorption coefficient at the outermost [PMI] layer.

« ABCLayers Number of [ABC|layers at each boundary. Note, that
no user-defined object (excluding the ‘Gas’ box which defines

simulation domain) must intersect these boundary layers. Only
applicable for [ABC| boundary model.

« kappamax Imaginary dielectric constant in consecutive [ABC] lay-
ers increases polynomially with their distance from the innermost
layer. kappamax specifies maximum value of imaginary dielectric
constant at the outermost [PML] layer. Note, that usage of the
parameter sigmamax in [PML]and kappamax in [ABC]|is different
as explained in the theory.

4.5 Plot Section

A Plot section can be specified by using the keyword Plot: {...}. The
keyword Quantities in Plot section lists the quantities in a comma
separated list which are to be saved at the end of the simulation.
Exactly one plot section must be instantiated per config file. An
example Plot section is shown below.

Plot:
{
Quantities = ["AbsElectricField",
"AbsReverseElectricField",
"ElectricFieldZ"];

A list of all the quantities which can be saved and plotted is given
in[6] Section together with their description. The listed quantities
are stored in the hdf5 file ‘SIWG_bpm.h5". They can be viewed in the
visualizer program ‘Paraview’ using the script file ‘SIWG_bpm.xdmf’.

4.6. MISCELLANEOUS COMMENTS 25

4.6 Miscellaneous Comments

4.6.1 Coordinate Transformation in Mode Solver

The mode solver always transforms the axes, such that the waveguide
is oriented along X-axis. That is, the waveguide cross-section is always
in YZ-plane. If 1D solver is used, then the field profiles are stored
along Y-axis. On the other hand, if 2D solver is used, then the field
profiles are stored on a grid in YZ plane.

4.6.2 Selecting Numeric Method For Mode Solver

Two numeric methods are provided for mode calculations, namely
1. Arpack routine (default) 2. Power method (Add UsePowerMethod
to the Settings in Solver section.).

Power method yields the results faster than the Arpack routine. It
may yield inaccurate modes with indices off their true values, when
MaximumModes > 1. It is recommended to use power method with
MaximumModes > 1 to search approximate values of the effective indices.
Then, set effective index to one of the values obtained before, and use
MaximumModes = 1, to get the desired mode profile.

At the moment, Arpack routine gives an error when complex index
is activated (Absorption). Therefore, for mode calculations using
complex index, always activate UsePowerMethod.

Chapter 5

Python Interface

The Opto-solver package provides a python module to perform
[Difference Time Domain (FDTD)} [BPM] and mode simulations using
a python script. The package also provides commands to retrieve
simulation results. Together with tensormesher python interface, it
enables users to construct a device, simulate it, and post-process the
results using a python script. This would come handy for structure
optimization for specific applications.
This chapter describes python interface of the [BPM]solver.

Note: Whenever possible, please use config file to setup the BPM]
solver object. Providing config file ensures that all the data are input
in the correct order.

5.1 Import modules

Python modules of the Opto-solver and the tensor-mesher package are
imported using the following script.

import numpy as np
import cutensormesher as m
import cuoptosolver as s

Note, that if you have downloaded hardware-accelerated version of
the optosolver, then you must import the modules with prefix cu as

27

28 CHAPTER 5. PYTHON INTERFACE

shown above. Else, import tensormesher and optosolver. Do not
mix them.

5.2 Constructors

Three constructors are provided for the [BPM}solver, as follows.

e s.bpmsolver(Device=dev) constructs the solver object by tak-
ing m.device () object dev provided by the tensor-mesher as an
input.

e s.bpmsolver(CmdFile="file.cfg") constructs the solver ob-
ject by parsing config file of the[BPM}solver. Note, this is exactly
the same file as described in Chapter [3] It also imports device
structure or mesh from the Filesection.

e s.bpmsolver(CmdFile="file.cfg" ,Device=dev) constructs the
solver object by parsing config file of the BPM}solver. Note, this
is exactly the same file as described in Chapter [3] except that
device given as an argument is used in the solver.

5.3 Setup the solver

The commands given below are called on the bpmsolver object. They
setup the solver, e.g. add sources, specify boundary conditions, etc.

Note: While modifying the solver object, it is strongly recommended
to use the following commands in the same order in which they are
listed below. For example, set global parameters, then set boundary
conditions, and then add sources.

5.3.1 setGlobalParameters

The command setGlobalParameters () sets solver various parameters
on a global scope. It takes the following arguments.

1. NumericParams : A python dictionary mapping parameter name
to its numeric value. The following numeric parameters can be
supplied.

5.3. SETUP THE SOLVER 29

o Wavelength : Wavelength of all the mode sources.

e Effectivelndex: Approximate effective index of the waveg-
uide. Exact effective index is calculated by mode calcula-
tions.

e DecayConstant : Approximate imaginary part of the effec-
tive index.

e BidirectionalDecayFactor : Decay factor for bi-directional
IBPM] simulations.

e BidirectionalTolerence : Tolerance at which the itera-
tions of the bidirectional BPM]| simulations stop.

e Bidirectionallterations : Maximum number of itera-
tions of the bidirectional [BPM] simulations.

2. StringParams : A python dictionary mapping parameter name
to a string. The following string parameters can be supplied.
e Equation : Possible alternatives - ‘Scalar’, or ‘Vectorial’.

e Simulation: Possible alternatives - ‘Bi-BPM’ for bi-directional

[BPM] ‘BPM’ for standard [BPM]

e Polarization : Possible alternatives - [TM] or [TEl
3. NumericListParams : Currently unused.

4. StringlistParams : A python dictionary mapping parameter
name to a list of string. Currently only Settings parameter is
recognized. The following strings can be supplied as a list to the
Settings parameter.

e WavelengthDepIndex: Use wavelength-dependent refrac-
tive index to calculate permittivity.

e Absorption: Propagate BPM] with complex permittivity
to take into acount decay of the waveguide amplitude.

5.3.2 setDomainBoundary

The command setDomainBoundary(...) takes the following argu-
ments -

30 CHAPTER 5. PYTHON INTERFACE

1. Model: type of domain boundary to be set. Possible alternatives
are - [Convolutional Perfectly Matching Layer (CPML), [RBC]
and [RBCI

2. Axes: axes at which the above specified boundary is to be set
are provided as a list of strings. Possible alternatives are - 7Y”,
77Z77.

3. NumericParams: A python dictionary mapping parameter name
to its numeric value . The following numeric parameters can be
supplied.

e PMLLayers: number of PML layers at each boundary face.

e sigmamax: maximum o parameter of the "CPML” model.

4. Flags: An empty list. This parameter is currently unused.

5.3.3 resetDomainBoundaryToReflective

resetDomainBoundaryToReflective() command resets all the do-
main boundaries to "reflective” domain boundaries (RBC)).

5.3.4 addSource
The command addSource(. ..) takes the following arguments-
1. Name : Name of the source

2. NumericParams : A python dictionary mapping parameter name
to its numeric value . The following numeric parameters can be
supplied.

o Intensity: source intensity (W/m?)
e CoordinateXCut: location of the source-plane. Only X-

coordinate is supplied.

3. StringParams: A python dictionaly mapping parameter name to
its string value. The following string parameters can be supplied.

e Type: Currently only "Mode” source is available.

5.4. SOLVE SYSTEM 31

4. NumericListParams: A python dictionary mapping parameter
name to a list of numeric values. The following string parameters
can be supplied.

o minYZPlane: If the mode-source is confined in YZ-plane,
then y- and z- coordinates of minimum of the source window
are specified.

o maxYZPlane: If the mode-source is confined in YZ-plane,
then y- and z- coordinates of maximum of the source window
are specified.

5. StringlListParams: Currently unused.

5.3.5 removeSource

The command removeSource(...) takes name of the source as an
input parameter and deletes the source from the solver.

5.4 Solve System

The following commands begin the simulations.

5.4.1 portToGPU

The command portToGPU(...) ports the simulations to the first
available GPU (with GPU id = 0). If you wish to port to another
GPU, please give the GPU id as an argument. This command must
be run before solving the system on the GPU.

5.4.2 solveSystem

The command solveSysten(. . .) begins[BPM|simulations. If portToGPU
is run before, then the BPM]simulator uses GPU for matrix inversion
operations. If portToGPU is not run before, then the CPU is used for
all the computation.

32 CHAPTER 5. PYTHON INTERFACE

5.5 Retrieve data

Once the simulation is finished, the following commands help in
accessing the data stored by the BPM] solver.

5.5.1 getSavedQuantitiesNames

The command getSavedQuantitiesNames(...) returns the names
of all the datasets stored by the [BPM]solver. The available dataset
names are listed in Chapter [6]

5.5.2 getAllSavedQuantitiesData

The command getAllSavedQuantitiesData(...) returns the stored
dataset values at all the vertices vertex as a 2D "NumPy” array.
Leading dimension has number of dataset entries and trailing dimension
stores dataset values at each vertex for each of the datasets.

5.5.3 getSavedQuantityData

The command getSavedQuantityData(. ..) returns the stored dataset
value of the user-specified dataset at all the vertices vertex as a
"NumPy” array. User must specify name of the dataset as an input
argument. Leading dimension is one and trailing dimension stores
dataset values at each vertex for each of the datasets.

Chapter 6

Visualization of Results

Real and imaginary parts of X-, Y-, and Z- components of electric field
and magnetic flux are calculated on the 2D /3D grid of the waveguide.
They are stored in an hdf5 file. Additionally, a xdmf script file is written.
The output files are named ‘<out>_bpm.xdmf’ and ‘<out>_bpm.h5’,
where ‘<out>’ is the string input by user with the keyword Out in
File section of mode solver config file.

Effective indexes corresponding to the active mode at a specific
x-location are stored in ‘<out>_Xloc_<xidx>_mode.csv’ file. Here,
<xidx>> is the index of x-coordinate of cross-section of the waveguide at
which the mode is calculated. They can be viewed using a text editor or
a csv file viewer program. Similarly, the mode profiles corresponding to
the mode at a specific x-location are stored in ‘<out>_Xloc_<xidx>_-
mode.h5’ file. The corresponding script file is named ‘<out>_Xloc_-
<xidx>_mode.xdmf’. It can be viewed using paraview.

6.1 Quantities

Following quantities can be saved at the end of the simulation.

e ElectricField[X | Y | Z]: Real part of x-, y-, or z- compo-
nent of [SVE of electric field.

33

34

CHAPTER 6. VISUALIZATION OF RESULTS

ImElectricField[X | Y | Z]: Imaginary part of x-, y-, or z-
component of [SVE] of electric field.

AbsElectricField: Magnitude of [SVE]of electric field.

MagneticFlux[X | Y | Z]: Real part of x-, y-, or z- component
of SVE] of magnetic flux.

ImMagneticFlux[X | Y | Z]: Imaginary part of x-, y-, or z-
component of [SVE] of magnetic flux.

AbsMagneticFlux: Magnitude of SVE]of magnetic flux.

ReverseElectricField[X | Y | Z]: Real part of x-, y-, or z-
component of [SVE] of reverse electric field. Only relevant when
bi-directional [BPM] simulation is performed.

ImReverseElectricField[X | Y | Z]: Imaginary part of x-,
y-, or z- component of SVE]of reverse electric field. Only relevant
when bi-directional BPM] simulation is performed.

AbsReverseElectricField: Magnitude of [SVE]of reverse elec-
tric field.

6.2 Visualization

The output xdmf file is an xml script which links the grid and other
attributes to the mode quantities. All the quantities stored in the
output hdf5 file can be viewed in the visualization software ‘Paraview’
using the following command.

>> paraview SiWG_bpm.xdmf

Appendix A

Notation and Acronyms

Acronyms

ABC Absorbing Boundary Condition

BPM Beam Propagation Method

CPML Convolutional Perfectly Matching Layer
FDTD Finite Difference Time Domain

RBC Periodic Boundary Condition
PML Perfectly Matching Layer

RBC Reflecting Boundary Condition
RHS Right Hand Side

SVE Slowly Varying Envelope

35

36 Acronyms

TE Transverse Electric
™ Transverse Magnetic

Bibliography

37

	1 Introduction
	1.1 Features
	1.2 Installation
	1.3 Licensing
	1.3.1 Purchasing the licenses
	1.3.2 Installation of SemiVi-activator
	1.3.3 License activation

	2 Theory of BPM Solver
	2.1 Derivation of BPM Equation
	2.2 Vectorial BPM Solver
	2.3 Scalar BPM Solver
	2.4 Solving BPM on Finite Difference Grid

	3 Configuration File Structure
	3.1 File Section
	3.2 Solver Section
	3.3 Source Section
	3.4 Boundary Section
	3.5 Plot Section
	3.6 Running Mode Calculation
	3.7 Output Files

	4 Configuring BPM Solver
	4.1 Keywords in File Section
	4.2 Keywords in Solver Section
	4.2.1 Available Settings in BPM solver

	4.3 Keywords in Source Section
	4.4 Keywords in Boundary Section
	4.5 Plot Section
	4.6 Miscellaneous Comments
	4.6.1 Coordinate Transformation in Mode Solver
	4.6.2 Selecting Numeric Method For Mode Solver

	5 Python Interface
	5.1 Import modules
	5.2 Constructors
	5.3 Setup the solver
	5.3.1 setGlobalParameters
	5.3.2 setDomainBoundary
	5.3.3 resetDomainBoundaryToReflective
	5.3.4 addSource
	5.3.5 removeSource

	5.4 Solve BPM System
	5.4.1 portToGPU
	5.4.2 solveSystem

	5.5 Retrieve data
	5.5.1 getSavedQuantitiesNames
	5.5.2 getAllSavedQuantitiesData
	5.5.3 getSavedQuantityData

	6 Visualization of Results
	6.1 Quantities
	6.2 Visualization

	A Notation and Acronyms
	Acronyms

