
1

User Guide v-1

Beam Propagation Method
Simulator

User Guide

SemiVi LLC
Zollikon, Switzerland.

October 11, 2025

Contents

1 Introduction 1
1.1 Features . 1
1.2 Installation . 2
1.3 Licensing . 2

1.3.1 Purchasing the licenses 3
1.3.2 Installation of SemiVi-activator 3
1.3.3 License activation 3

2 Theory of Beam Propagation Method (BPM) Solver 5
2.1 Derivation of BPM Equation 6
2.2 Vectorial BPM Solver 7
2.3 Scalar BPM Solver . 8
2.4 Solving BPM on Finite Difference Grid 8

3 Configuration File Structure 11
3.1 File Section . 13
3.2 Solver Section . 14
3.3 Source Section . 14
3.4 Boundary Section . 15
3.5 Plot Section . 15
3.6 Running Mode Calculation 15
3.7 Output Files . 17

4 Configuring BPM Solver 19
4.1 Keywords in File Section 19
4.2 Keywords in Solver Section 20

3

4 CONTENTS

4.2.1 Available Settings in BPM solver 22
4.3 Keywords in Source Section 22
4.4 Keywords in Boundary Section 23
4.5 Plot Section . 24
4.6 Miscellaneous Comments 25

4.6.1 Coordinate Transformation in Mode Solver . . 25
4.6.2 Selecting Numeric Method For Mode Solver . . 25

5 Python Interface 27
5.1 Import modules . 27
5.2 Constructors . 28
5.3 Setup the solver . 28

5.3.1 setGlobalParameters 28
5.3.2 setDomainBoundary 29
5.3.3 resetDomainBoundaryToReflective 30
5.3.4 addSource . 30
5.3.5 removeSource 31

5.4 Solve BPM System . 31
5.4.1 portToGPU . 31
5.4.2 solveSystem . 31

5.5 Retrieve data . 32
5.5.1 getSavedQuantitiesNames 32
5.5.2 getAllSavedQuantitiesData 32
5.5.3 getSavedQuantityData 32

6 Visualization of Results 33
6.1 Quantities . 33
6.2 Visualization . 34

A Notation and Acronyms 35
Acronyms . 35

Chapter 1

Introduction

BPM solver in Optosolver package is used to calculate Slowly Varying
Envelope (SVE) of all the components of electric field and magnetic
flux along the waveguide by using BPM method. Both 2D and 3D
waveguide structures can be provided as inputs.

BPM solver uses Mode solver in Optosolver package internally for
necessary mode calculations to get effective waveguide index.

1.1 Features

BPM solver supports materials with constant real and imaginary
permittivity. If the material config file contains wavelength vs. re-
fractive index table, then wavelength dependent real and imaginary
permittivity can be used as well.

BPM solver also supports bidirectional BPM calculations which
can be used to calculate reflection coefficient. This support is on
experimental basis only.

BPM solver stores SVE of all the components of electric field and
magnetic flux in an hdf5 file. An xdmf script file is also created for
visualizing the results in paraview.

1

2 CHAPTER 1. INTRODUCTION

1.2 Installation
SemiVi currently supports software installation on various Linux
distributions. The software installer is available in Debian package
(*.deb file) and in RPM format (*.rpm file).

Note, that if you have downloaded mkl version of the OptoSolver,
the following package needs to be installed manually by you before
installing the circuit solver from the installer package.

• Intel math kernel libraries (released in 2020 or later), which
include distributions of open-mp, pardiso, etc. specific for Intel
processors.

The OptoSolver sources mkl functions from the above installation.
These functions can offer speed-up in the calculations on Intel proces-
sors. The mkl package can be downloaded from Intel website.

If the OptoSolver without mkl-acceleration is downloaded, then
installation of the above package is not necessary.

Once the above package is installed, download the installer on
the local machine. The installer file named optosolver_amd64.deb
will appear in the Downloads directory. Go to the directory using cd
command. Use the following command to install the OptoSolver from
the installer.

>> sudo apt install ./optosolver_amd64.deb

Alternately, one may use dpkg to install the software and use apt
to install missing dependencies as follows.

>> sudo dpkg -i ./optosolver_amd64.deb
>> sudo apt install -f

You need to have root access to install the software on your
machine.

1.3 Licensing
Two types of licenses can be purchased for SemiVi BPM solver.

1.3. LICENSING 3

Node-locked licenses enable unlimited number of simultaneous
executions of the BPM solver on the client machine. The node-locked
license limits the usage of the BPM solver only to the machine on
which the license is activated.

With server licenses, the BPM solver can be run on any of the
machines in the client organization on which the server license is acti-
vated. However, only the specified number of simultaneous executions
are possibie at a time.

1.3.1 Purchasing the licenses
The clients can place order for any of the above licenses on SemiVi
website (https://www.semivi.ch/sales) or by contacting our sales-
person.

We will process the request and send the license files by email. The
license files need to be activated on the desired machines using the
license key which is emailed separately using the following command.

1.3.2 Installation of SemiVi-activator
The license file must be activated on the desired computer before use.
For that purpose, download the installer semivila_amd64.deb file on
the local machine and install it as follows.

>> sudo apt install ./semivila_amd64.deb

1.3.3 License activation
To activate the license file, please run the following command.

>> semivila -a File.lic <Server|NodeLocked>License.lic\\

Replace File.lic with the your license file, and use appropriate
name for the activated file. You will be prompted to input the
16 digit license key. A successful activate of the license file will
generate the activated license file. Copy the activated license file to the
/opt/semivi/licenses/ folder and rename it to ServerLicense.lic
or NodeLockedLicense.lic for server and node-locked licenses respec-
tively. If you have more than one license files, please delete the older

https://www.semivi.ch/sales

4 CHAPTER 1. INTRODUCTION

expired license files. If you wish to keep more than one active license
files, you can also name the license files as <i>NodeLockedLicense.lic
where <i> could be from 0 to 49. For ex. 49NodeLockedLicense.lic
or 49ServerLicense.lic. The program will read the license files and
lock the first available license. All the target users must have read
rights on the license file.

User-guides of all the software provided by SemiVi are stored at
the location /opt/semivi/userguides/.

Tutorials of all the software provided by SemiVi are stored at the
location /opt/semivi/tutorials/optosolver.

Chapter 2

Theory of BPM Solver

Maxwell’s equations in non-homogeneous media without free charges
and free currents are given by,

∇ · ~D = 0,∇ · ~B = 0,∇× ~E = −∂
~B
∂t
,∇× ~H = ∂ ~D

∂t
(2.1)

Here, ~D = ε~E is a displacement vector, E is an electric field, ~H = ~B/µ
is the magnetic flux, and ~B is the magnetic field. Applying curl to
the third Maxwell’s equation, Right Hand Side (RHS) of the third
equation is simplified as,

− ∂∇× ~B
∂t

= −µ∂∇×
~H

∂t
= −µ∂

2 ~D
∂t2

= −µε∂
2~E
∂t2

. (2.2)

In the above simplification, we have assumed that µ is spatially
homogeneous and both ε and µ are time-independent. The complete
equation can now be written as a function of ~E .

∇×∇× ~E = −µε∂
2~E
∂t2

(2.3)

BPM deals with propagation of monochromatic light in the waveg-
uide. ~E due to the monochromatic light can be written as

~E(~r) = ~E(~r) exp(iωt). (2.4)

5

6 CHAPTER 2. THEORY OF BPM SOLVER

Substituting this in Eq. 2.3, and using ∇×∇× ~E = ∇2 ~E −∇(∇ · ~E)
we get,

∇2 ~E −∇(∇ · ~E) + n2k2
0
~E = 0 (2.5)

.
In BPM implementation, mode is set to propagate in x- direc-

tion. Splitting ∇ operator and ~E into transverse and longitudinal
components, we get

~E(~r) = Ex(~r)x̂+ Ey(~r)ŷ + Ez(~r)ẑ = Ex(~r)x̂+ ~Et(~r) (2.6a)

∇ = ∂

∂x
x̂+ ∂

∂y
ŷ + ∂

∂z
ẑ = ∂

∂x
x̂+∇t (2.6b)

.
Using the above notations, and separating Eq. 2.5 into transverse

and longitudinal components, the transverse component can be written
as,

∇2 ~Et −∇t(∇t · Et + ∂Ex
∂x

) + n2k2
0
~Et = 0 (2.7)

. Using Poisson equation, and assuming ∂n2

∂x ≈ 0,

∇ · (n2 ~E) = ∇t · (n2 ~Et) + n2 ∂Ex
∂x

+ Ez
∂n2

∂x
= 0

∂Ex
∂x

= −∇t · (n
2 ~Et)

n2 = −∇tn
2

n2 · ~Et −∇t · ~Et (2.8)

Substituting Eq. 2.8 to Eq. 2.7 we get,

∂2 ~Et
∂x2 +∇2

t
~Et +∇t

[
∂tn

2

n2 · ~Et
]

+ n2k2
0
~Et = 0 (2.9)

.

2.1 Derivation of BPM Equation
In a waveguide, rapid variation of the transverse fields is the phase
variation due to propagation along the guiding axis. Assuming this
guiding axis mainly along x-direction, one can define a SVE of the
transverse ~Et as follows,
~Et = Ey ŷ + Ez ẑ = Ψy exp(−in0k0x)ŷ + Ψz exp(−in0k0x)ẑ. (2.10)

2.2. VECTORIAL BPM SOLVER 7

The above equation can be used to calculate ∂2 ~Et

∂x2 in Eq. 2.9.

∂2Ey
∂x2 =

[
∂2Ψy

∂x2 − 2in0k0
∂Ψy

∂x
− n2

0k
2
0Ψy

]
exp(−in0k0x) (2.11)

SVE approximation is given below,∣∣∣∣∂2Ψy

∂x2

∣∣∣∣� 2in0k0
∂Ψy

∂x
. (2.12)

Similar set of equation can be written for calculating ∂2Ez

∂x2 . Substitut-
ing SVE of ~Et given by Eq. 2.10, ∂

2Ey

∂x2 and expressions for ∂2Ez

∂x2 given
by Eq. 2.11 in Eq. 2.9, we get

2in0k0
∂Ψy

∂x
=∂2Ψy

∂y2 + ∂2Ψy

∂z2 + ∂

∂y

[
1
n2
∂(n2)
∂y

Ψy + 1
n2
∂(n2)
∂z

Ψz

]
+ k2

0(n2 − n2
0)Ψy (2.13a)

2in0k0
∂Ψz

∂x
=∂2Ψz

∂y2 + ∂2Ψz

∂z2 + ∂

∂z

[
1
n2
∂(n2)
∂y

Ψy + 1
n2
∂(n2)
∂z

Ψz

]
+ k2

0(n2 − n2
0)Ψz (2.13b)

Eq. 2.13 form the equations used for propagating the mode along x
direction.

2.2 Vectorial BPM Solver
When ε of the waveguide structure is strongly inhomogeneous, coupling
terms in Eq. 2.13 between both Ψy and Ψz cannot be ignored. Eq. 2.13a
and Eq. 2.13a need to be solved together for mode propagation. This
is performed by Victoria’s BPM solver. In this solver, once SVE of
electric fields at x = 0 (Ψy(0, y, z) and Ψz(0, y, z)) are set, the following
equation is solved to obtain their values at all x > 0.

∂

∂x

[
Ψy

Ψz

]
= −i

2n0k0

[
P̂yy P̂yz
P̂zy P̂zz

] [
Ψy

Ψz

]
(2.14)

where each individual operator is given below,

P̂yy ≡
∂

∂y
(1
n2

∂

∂y
n2) + ∂2

∂z2 + ω2

c2 (n2 − n2
0) (2.15a)

8 CHAPTER 2. THEORY OF BPM SOLVER

P̂yz ≡
∂

∂y
(1
n2

∂

∂z
n2)− ∂2

∂y∂z
(2.15b)

P̂zy ≡
∂

∂z
(1
n2

∂

∂y
n2)− ∂2

∂z∂y
(2.15c)

P̂zz ≡
∂2

∂y2 + ∂

∂z
(1
n2

∂

∂z
n2) + ω2

c2 (n2 − n2
0) (2.15d)

2.3 Scalar BPM Solver
When one component of the transverse field is dominant over the other
component and effective index differences are small among different
regions, then one may ignore ∇εε . If Polarization is set to Transverse
Magnetic (TM), Ψz is the dominant field. If Polarization is set to
Transverse Electric (TE), Ψy is dominant. If Ψy is dominant over Ψz,
the mode equation can be written as,

∂

∂x
Ψy = −i

2n0k0
P̂Ψy (2.16)

where the operator P̂ is given by,

P̂ = ∂2

∂y2 + ∂2

∂z2 + k2
0(n2 − n2

0) (2.17)

2.4 Solving BPM on Finite Difference Grid

In vectorial 3D BPM solver, the operator P̂ ≡
[
P̂yy P̂yz
P̂zy P̂zz

]
in Eq. 2.14

has been discretized on a cubic grid at each YZ cross-section along x
direction. In scalar 3D BPM solver or 2D BPM solver, the operator P̂
in Eq. 2.16 has been discretized on the cubic or rectangular grid at
each YZ cross-section. On discretization, P̂ becomes a square matrix
P and SVE of fields Ψy(x) and Ψz(x) become vector Ψ(x). Eqs. 2.14
and 2.16 are discretized along x direction.

Ψm −Ψm−1

dx
= −i

2n0k0
[αPm ·Ψm + (1− α)Pm−1 ·Ψm−1] (2.18)

2.4. SOLVING BPM ON FINITE DIFFERENCE GRID 9

where Ψm and Ψm−1 are discretized SVE at x = xi and x = xi−1,
respectively. The term on the RHS results from Crank-Nicholson
discretization scheme, where α ∈ (0.5, 1.0] ensures stability of the
scheme. To minimize discretization error, it is advisable to set α as
close to 0.5 as possible. Simplifying the above equation gives,[

I− iα · dx
2n0k0

Pm

]
·Ψm =

[
I + i(1− α) · dx

2n0k0
Pm−1

]
·Ψm−1 (2.19)

Note, that RHS of the above equation is known since Ψm−1 has already
been calculated or set from the external source. At every x = xm,
Eq. 2.19 is solved to calculate Ψm from Pm, Pm−1, and Ψm−1 at
x = xm−1.

Chapter 3

Configuration File
Structure

Optosolver software reads various inputs from a BPM solver configu-
ration file and calculate the SVE of the mode propagating along the
waveguide. In BPM solver, the waveguide is always assumed to be
traveling along X-axis. The mode is assumed to be in YZ plane. In
2D, the modal fields are assumed to be uniform along Z-axis. The
BPM solver is executed by using the following command –

>> OptoSolver bpmsolver bpmSiWG_dev.cfg

In the above command, the word after Optosolver is the name
of the program to be executed (in this case – bpmsolver). The
program name is followed by the configuration file name (in this
case – bpmSiWG_dev.cfg). A sample configuration file of the BPM
solver is provided below.

File:
{

Device = "bpmSiWG_str.cfg";
Out = "SiWG";

}

11

12 CHAPTER 3. CONFIGURATION FILE STRUCTURE

Solver:
{

Simulation = "BPM"; // Alternates: "Bi-BPM"
Equation = "Scalar"; // Alternates: "Vectorial"
Polarization = "TM"; // Alternates: "TE"
Settings = ["UsePowerMethod"];

Wavelength = 0.9;
EffectiveIndex = 3.5;
DecayConstant = 0.1;
InterfacesX = [-0.5, 2.5];
BidirectionalDecayFactor = 1E-2;
BidirectionalTolerence = 1E-3;
BidirectionalIterations = 10;

}

Source*left:
{
Type = "Mode";
CoordinateXCut = -4.5;
Intensity = 1000;
}

Source*mid:
{
Type = "Mode";
CoordinateXCut = -2.;
Intensity = 1000;
}

Boundary*ybdr:
{

Axis = ["Y", "Z"];
Model = "PML";
PMLLayers = 5.;
sigmamax = 1.;

}

3.1. FILE SECTION 13

Plot:
{

Quantities = ["AbsElectricField",
"AbsReverseElectricField",
"ElectricFieldZ"];

}

The above config file is composed of various sections which define
the solver settings, types of sources, domain boundaries, the quantities
to be plotted. In the config file, the string before ’*’ gives the section
type, whereas the string after ’*’ specifies the name of the section.
Various keywords in each of the section and their functionality is
shortly described below.

3.1 File Section

The keyword Device provides the file name from which the device
structure is created. Internally, the file is processed differently accord-
ing to its extension.

• If the file extension is “str.cfg”, the file is processed as an input
file for the tensor mesh generation.

• If the file extension is “str.h5”, The file is read as hdf5 file
generated by the structure and tensor mesh generator.

The keyword Out sets the prefix to the output file name. In this
case, the output files will be called ‘SiWG bpm.xdmf’ and ‘SiWG -
bpm.h5’. Also, the mode solver used to calculate modes at various cross-
sections in the device also stores the modal quantities in ‘SiWG Xloc -
<xid> mode.xdmf’ and ‘SiWG Xloc <xid> mode.h5’. Here, <xid>
represents index of X coordinate at which the mode in the YZ plane
is calculated.

14 CHAPTER 3. CONFIGURATION FILE STRUCTURE

3.2 Solver Section

This section lists the information needed for the BPM solver apart
from the device structure. This information is also passed on to the
mode solver. For example, mode polarization is required, when the 2D
”Scalar” laser equation is solved or 1D laser equation is solved. The
keyword “Wavelength” provide wavelength (in µm) of propagating
light in the waveguide. Initial effective index around which the modes
are searched is given by the keyword “EffectiveIndex”. “DecayConstant”
sets imaginary part of the effective index. The rest of the quantities
required for the mode calculation are set to their default values. Results
of mode calculation, such as mode effective index and mode profile, are
used for the calculation of SVE of electric field along the waveguide.

Various flags are provided as a list of comma-separated strings with
the keyword “Settings”. In the above file, the keyword “UsePower-
Method” is listed. Therefore, a faster ‘power method’ is used for mode
calculation.

Exactly one ‘Solver’ section must be present in the config file.

3.3 Source Section

Multiple sources with different names can be instantiated in a config
file.

In the given config file, two sources have been instantiated. They
are named, ‘left’ and ‘mid’. It specifies the type of the source (keyword
‘Type’), location of the source along x-axis (keyword ‘CoordinateX-
Cut’), and its intensity (keyword ‘Intensity’).

Currently, only ‘Mode’ type source is available. When mode type
source is specified, mode calculations are performed on YZ cross-section
of the device at the x-coordinate set by ‘CoordinateXCut’. These
mode calculations yield electric field and magnetic flux normalized to
integrated power of 1 Watt. It is scaled with the intensity specified with
the keyword ‘Intensity’. The scaled modal electric field is then added
to the SVE of forward propagating electric field at the x-coordinate of
the source.

3.4. BOUNDARY SECTION 15

3.4 Boundary Section
Multiple ‘Boundary’ sections with different names can be instantiated
in a config file.

In the given file, a boundary section modeling ‘PML’ boundary
type has been instantiated. This model is applicable along the planes
at the boundary perpendicular to the axes given in the list with the
keyword ‘Axis’. In this case, since the keyword ‘Y’ is specified, the
model is applicable at the layers in XZ plane at both maximum and
minimum y boundaries. Separate boundary models can be applied at
+Y or -Y axis by using the keywords ‘Ymax’ and ‘Ymin’, respectively.
Boundaries perpendicular to Z axis are modeled in the same manner.

For ‘PML’ type boundary, the number of absorbing PML layers
at the boundaries are specified with the keyword ‘PMLLayers’. Also,
absorption coefficient at the innermost layer is given with the keyword
‘sigmamax’. Absorption coefficient decays polynomially towards the
outermost layer.

Separate boundary sections must be used for instantiating different
boundary models. Following boundary models are recognized by
the BPM solver – 1. Perfectly Matching Layer (PML) 2. Absorbing
Boundary Condition (ABC) 3. Reflecting Boundary Condition (RBC)
4. Periodic Boundary Condition (RBC). By default, boundaries along
non-propagating axes are assumed to be reflecting. Boundary along
the propagating axis ‘X’ is specially treated as described in the theory.

3.5 Plot Section
Exactly one plot section must be instantiated per config file. The
keyword ‘Quantities’ lists the quantities that must be saved in an hdf5
file as a list of string. SVE of these quantities are calculated in the
BPM solver by propagating the mode along X axis.

3.6 Running Mode Calculation
In this section, the above config file is used to perform mode calculations
on a lateral 2D cross section of a waveguide shown in Fig. 3.1. The
waveguide is aligned along the lateral direction (X-axis). It is invariant

16 CHAPTER 3. CONFIGURATION FILE STRUCTURE

Figure 3.1: Structure of the lateral cross-section of the simulated
waveguide along X axis. The waveguide is invariant in Z direction
normal to the plane of the figure.

along Z dimension (normal to the plane of the figure). The waveguide
structure can be created using the command

>> OptoSolver str bpmSiWG_str.cfg.

It is not necessary to generate the structure before simulating it.
The config file for generating the structure (‘modeSiWG str.cfg’) can
be specified as Device in File section of the mode solver config file
modeSiWG dev.cfg’. The solver internally generates the structure
and passes it to the BPM solver. The structure config file must also
be present in the same folder. Once the config file is set, the BPM
calculations can be performed using the following command

>> OptoSolver bpmsolver bpmSiWG_dev.cfg

The BPM calculations will generate and xdmf file (extension
*.xdmf) together with an hdf5 file (extension *.h5).

3.7. OUTPUT FILES 17

3.7 Output Files
The keyword Out in the File section of the config file sets the prefix
to the output file name. In this case, the output files are called
‘SiWG bpm.xdmf’ and ‘SiWG bpm.h5’. Note, that the xdmf file is
simply an XML script which provides additional information on various
datasets stored in the hdf5 file for visualization purpose. If Paraview
is installed on the machine, the xdmf file can be opened using the
following command

>> paraview SiWG_bpm.xdmf

In paraview, various quantities listed in the Plot section such as,
X, Y, and Z components of SVE of electric field and magnetic flux
along the waveguide can be selected for visualization. Fig. 3.2 plots
electric field in Z-direction and magnetic flux in Y-direction. The
horizontal axis is X-axis and the vertical axis is Y-axis. Note the
increased electric field at x = −4.5µm and −2.0µm due to the modal
sources present at those locations. Also, scattering of light from the
waveguide into oxide cladding is observed as the mode propagates from
a thicker Silicon waveguide into a thinner one.

18 CHAPTER 3. CONFIGURATION FILE STRUCTURE

(a) Electric Field

(b) Magnetic Flux

Figure 3.2: Calculated SVE of electric field along Z direction and
magnetic flux along Y direction of the waveguide in Fig. 3.1 are shown
in the figures above. Note, that the fields are invariant in Z direction
normal to the plane of the figure.

Chapter 4

Configuring BPM Solver

An example configuration file provided in Chapter 3 lists typical
configurations of BPM solver. In BPM solver, the waveguide is always
assumed to be propagating the beam along X-direction. The beam is
generated by the uni-modal source specified by its X-location. Mode
Solver is used internally to calculate modal electric fields and magnetic
fluxes along the waveguide cross-section at X-location of the source.

In the chapter, a list of all the available configurations in the
BPM solver and their usage information is provided. For clarity, the
keywords are listed section-wise. The mandatory keywords are marked
‘mandatory’. Optional keywords are provided with the default input
values.

4.1 Keywords in File Section
Following keywords must be listed in File section of BPM solver config
file.

• Device: (Mandatory) Specify either a config file for structure
generation or a saved mesh file in hdf5 format.

• Out: (Mandatory) Specify prefix of the output xdmf and hdf5
files. The output files are named ‘<out> bpm.xdmf’ and ‘<out> -
bpm.h5’, where ‘<out>’ is the string input by user in Out.

19

20 CHAPTER 4. CONFIGURING BPM SOLVER

4.2 Keywords in Solver Section
Following keywords may be listed in Solver section of BPM solver
config file. The BPM Solver is configured using these keywords.

• Wavelength: (Mandatory) Wavelength of all the sources is
specified in the units of µm.

• EffectiveIndex: (Mandatory) Effective refractive index of the
waveguide around which the waveguide modes are searched at
the source locations and the X-locations listed in InterfacesX.
Effective index of the propagating fields at any location in the
waveguide is set to the mode effective index of the nearest source
or interface which comes before the given location.

• DecayConstant: (Mandatory) Initial value of the decay constant
of the waveguide. When complex mode equation is solved,
waveguide modes are searched around complex effective index
n′ = n + κι where n and κ stand for the effective index and
the decay constant respectively. Complex effective index causes
decay of field amplitudes along propagation direction.

• Polarization: If a 2D device is simulated or if a 3D device
is simulated with the scalar mode equation, polarization of the
mode must be specified. Polarization can be ‘TE’ or ‘TM’,
which stand for ‘Transverse Electric’ or ‘Transverse Magnetic’,
respectively. Default value is ‘TE’.

• Equation: If a 3D device is simulated, mode calculations are
performed along YZ-plane of the waveguide. In this case, either
‘Scalar’ or ‘Vectorial’ mode equation can be solved for mode
calculations as well as propagation using BPM. Equation can be
either ‘Scalar’ or ‘Vectorial’. Default value is ‘Scalar’.

• PowerMethodTol: Applicable only when power method is used
for mode calculations along waveguide cross-section. When
difference between the eigenvalues between successive iterations
is less than the tolerance then the calculations are terminated.
Default value is 10−8.

4.2. KEYWORDS IN SOLVER SECTION 21

• PowerMethodMaxIter: Maximum iterations for mode calcula-
tions using the power method. Applicable only when power
method is used for mode calculations. Default value is 50.

• Settings: Various flags are set by providing a list of appropriate
keywords as comma-separated strings as follows.

SolverSettings = ["UsePowerMethod",
"WavelengthDepIndex"];

• Simulation: Specifies the type of BPM simulation to be per-
formed. Following types of BPM simulations can be performed.

1. BPM: Performs forward propagation of the waveguide.
2. Bi-BPM

.

• BidirectionalDecayFactor: In Bidirectional BPM calculations,
reverse electric field is multiplied with BidirectionalDecayFactor
and propagated backward. Default value is 10−2.

• BidirectionalTolerence In Bidirectional BPM calculations,
forward and reverse propagation are iteratively performed. When
the ratio of reverse electric field to the forward electric field at the
end of forward propagation is less than BidirectionalTolerence,
the iterations end. The iterations also end, if the ratio does not
change between successive iterations. Default value is 10−3.

• BidirectionalIterations: Specifies maximum number of iter-
ations of forward and reverse propagation in Bidirectional BPM.
Default value is 10.

• InterfacesX: Specifies a list of x-coordinates at which the
waveguide discontinuities or interfaces between two different
waveguides exist. The x-coordinates are listed in the following
format.

InterfacesX = [-0.5, 5.0, 10.];

22 CHAPTER 4. CONFIGURING BPM SOLVER

Note, that the Mode solver, which is internally used for mode
calculations at the source locations, is also configured from the relevant
keywords listed in the Solver section of BPM solver config file.

4.2.1 Available Settings in BPM solver
Keywords which may be listed in the field Settings to set certain
flags in the mode solver are listed below. Note, that they are listed in
the decreasing order of priority. In the case of a conflict, the upper
keyword has higher priority over the lower keyword.

1. WavelengthDepIndex: Real and imaginary dielectric constants
are determined from the table of wavelength dependent complex
refractive indices specified in the material config file. Linear
interpolation is used if the wavelength is not in the list. If
the wavelength is outside of the table range, then the dielectric
constants are set to smallest/largest frequency

2. UsePowerMethod: Power method is used for mode calculations,
else Arpack routines are used.

3. Absorption: Complex refractive index of the materials is used
for mode calculations, and the modes with complex index are
calculated. At the moment, Arpack routines give error, if this
keyword is used.

Note, that priority of the keywords does not depend on their order
in the list supplied with Settings.

4.3 Keywords in Source Section
In the config file, the source section is instantiated by the name
‘Source*<name>’, where <name> is the name of the source. Multiple
sources with different names can be instantiated in a config file.
Following keywords can be defined in Source section.

• Type: Currently only the source of the type ‘Mode’ is supported.
The ‘Mode’ type source performs Mode calculations to determine
electric field distribution in the cross section. Default value is
‘Mode’.

4.4. KEYWORDS IN BOUNDARY SECTION 23

• CoordinateXCut: (Mandatory) Specifies x-coordinate at which
the source is present.

• Intensity: (Mandatory) Specifies intensity of the mode source
in the units of ‘W/ ţmm2.

4.4 Keywords in Boundary Section
In the config file, a Boundary section is instantiated by the name
‘Boundary*<name>’, where <name> represents the boundary name.
Multiple boundary definitions with different names can be instantiated
in a config file. Following keywords can be defined in Boundary section.

• Axis: Current boundary definition is applied to the list of
boundaries specified by Axis. Available sets of boundary names
are –

1. Ymin: XZ boundary at the smallest y-coordinate.
2. Ymax: XZ boundary at the largest y-coordinate.
3. Y: XZ boundary at both the smallest and largest y-coordinates.
4. Zmin: XY boundary at the smallest z-coordinate.
5. Zmax: XY boundary at the largest z-coordinate.
6. Z XY boundary at both the smallest and largest z-coordinates.

The Axis are listed in the following format. Axis = ["Ymin", "Ymax", "Z"];

• Model Boundary type to be applied to the current boundary
condition. Following boundary models are recognized by the
BPM solver – 1. PML 2. ABC 3. RBC 4. RBC. Separate boundary
sections must be used for instantiating different boundary models.
By default, boundaries along non-propagating axes are assumed
to be reflecting. Boundary along the propagating axis ‘X’ is
specially treated as described in the theory.

• PMLLayers Number of PML layers at each boundary. Note, that
no user-defined object (excluding the ‘Gas’ box which defines
simulation domain) must intersect these boundary layers. Only
applicable for PML boundary model.

24 CHAPTER 4. CONFIGURING BPM SOLVER

• sigmamax Value of absorption coefficient in consecutive PML
layers increases polynomially with their distance from the in-
nermost layer. sigmamax specifies maximum value of the the
absorption coefficient at the outermost PML layer.

• ABCLayers Number of ABC layers at each boundary. Note, that
no user-defined object (excluding the ‘Gas’ box which defines
simulation domain) must intersect these boundary layers. Only
applicable for ABC boundary model.

• kappamax Imaginary dielectric constant in consecutive ABC lay-
ers increases polynomially with their distance from the innermost
layer. kappamax specifies maximum value of imaginary dielectric
constant at the outermost PML layer. Note, that usage of the
parameter sigmamax in PML and kappamax in ABC is different
as explained in the theory.

4.5 Plot Section
A Plot section can be specified by using the keyword Plot: {...}. The
keyword Quantities in Plot section lists the quantities in a comma
separated list which are to be saved at the end of the simulation.
Exactly one plot section must be instantiated per config file. An
example Plot section is shown below.

Plot:
{

Quantities = ["AbsElectricField",
"AbsReverseElectricField",
"ElectricFieldZ"];

}

A list of all the quantities which can be saved and plotted is given
in 6, Section 6.1, together with their description. The listed quantities
are stored in the hdf5 file ‘SiWG bpm.h5’. They can be viewed in the
visualizer program ‘Paraview’ using the script file ‘SiWG bpm.xdmf’.

4.6. MISCELLANEOUS COMMENTS 25

4.6 Miscellaneous Comments
4.6.1 Coordinate Transformation in Mode Solver
The mode solver always transforms the axes, such that the waveguide
is oriented along X-axis. That is, the waveguide cross-section is always
in YZ-plane. If 1D solver is used, then the field profiles are stored
along Y-axis. On the other hand, if 2D solver is used, then the field
profiles are stored on a grid in YZ plane.

4.6.2 Selecting Numeric Method For Mode Solver
Two numeric methods are provided for mode calculations, namely
1. Arpack routine (default) 2. Power method (Add UsePowerMethod
to the Settings in Solver section.).

Power method yields the results faster than the Arpack routine. It
may yield inaccurate modes with indices off their true values, when
MaximumModes > 1. It is recommended to use power method with
MaximumModes > 1 to search approximate values of the effective indices.
Then, set effective index to one of the values obtained before, and use
MaximumModes = 1, to get the desired mode profile.

At the moment, Arpack routine gives an error when complex index
is activated (Absorption). Therefore, for mode calculations using
complex index, always activate UsePowerMethod.

Chapter 5

Python Interface

The Opto-solver package provides a python module to perform Finite
Difference Time Domain (FDTD), BPM, and mode simulations using
a python script. The package also provides commands to retrieve
simulation results. Together with tensormesher python interface, it
enables users to construct a device, simulate it, and post-process the
results using a python script. This would come handy for structure
optimization for specific applications.

This chapter describes python interface of the BPM solver.
Note: Whenever possible, please use config file to setup the BPM
solver object. Providing config file ensures that all the data are input
in the correct order.

5.1 Import modules
Python modules of the Opto-solver and the tensor-mesher package are
imported using the following script.

import numpy as np
import cutensormesher as m
import cuoptosolver as s

Note, that if you have downloaded hardware-accelerated version of
the optosolver, then you must import the modules with prefix cu as

27

28 CHAPTER 5. PYTHON INTERFACE

shown above. Else, import tensormesher and optosolver. Do not
mix them.

5.2 Constructors
Three constructors are provided for the BPM-solver, as follows.

• s.bpmsolver(Device=dev) constructs the solver object by tak-
ing m.device() object dev provided by the tensor-mesher as an
input.

• s.bpmsolver(CmdFile="file.cfg") constructs the solver ob-
ject by parsing config file of the BPM-solver. Note, this is exactly
the same file as described in Chapter 3. It also imports device
structure or mesh from the Filesection.

• s.bpmsolver(CmdFile="file.cfg",Device=dev) constructs the
solver object by parsing config file of the BPM-solver. Note, this
is exactly the same file as described in Chapter 3, except that
device given as an argument is used in the solver.

5.3 Setup the solver
The commands given below are called on the bpmsolver object. They
setup the solver, e.g. add sources, specify boundary conditions, etc.

Note: While modifying the solver object, it is strongly recommended
to use the following commands in the same order in which they are
listed below. For example, set global parameters, then set boundary
conditions, and then add sources.

5.3.1 setGlobalParameters
The command setGlobalParameters() sets solver various parameters
on a global scope. It takes the following arguments.

1. NumericParams : A python dictionary mapping parameter name
to its numeric value. The following numeric parameters can be
supplied.

5.3. SETUP THE SOLVER 29

• Wavelength : Wavelength of all the mode sources.
• EffectiveIndex : Approximate effective index of the waveg-

uide. Exact effective index is calculated by mode calcula-
tions.

• DecayConstant : Approximate imaginary part of the effec-
tive index.

• BidirectionalDecayFactor : Decay factor for bi-directional
BPM simulations.

• BidirectionalTolerence : Tolerance at which the itera-
tions of the bidirectional BPM simulations stop.

• BidirectionalIterations : Maximum number of itera-
tions of the bidirectional BPM simulations.

2. StringParams : A python dictionary mapping parameter name
to a string. The following string parameters can be supplied.

• Equation : Possible alternatives - ‘Scalar’, or ‘Vectorial’.
• Simulation : Possible alternatives - ‘Bi-BPM’ for bi-directional

BPM, ‘BPM’ for standard BPM.
• Polarization : Possible alternatives - TM or TE.

3. NumericListParams : Currently unused.

4. StringListParams : A python dictionary mapping parameter
name to a list of string. Currently only Settings parameter is
recognized. The following strings can be supplied as a list to the
Settings parameter.

• WavelengthDepIndex: Use wavelength-dependent refrac-
tive index to calculate permittivity.

• Absorption: Propagate BPM with complex permittivity
to take into acount decay of the waveguide amplitude.

5.3.2 setDomainBoundary
The command setDomainBoundary(...) takes the following argu-
ments -

30 CHAPTER 5. PYTHON INTERFACE

1. Model: type of domain boundary to be set. Possible alternatives
are - Convolutional Perfectly Matching Layer (CPML), RBC,
and RBC.

2. Axes: axes at which the above specified boundary is to be set
are provided as a list of strings. Possible alternatives are - ”Y”,
”Z”.

3. NumericParams: A python dictionary mapping parameter name
to its numeric value . The following numeric parameters can be
supplied.

• PMLLayers: number of PML layers at each boundary face.
• sigmamax: maximum σ parameter of the ”CPML” model.

4. Flags: An empty list. This parameter is currently unused.

5.3.3 resetDomainBoundaryToReflective
resetDomainBoundaryToReflective() command resets all the do-
main boundaries to ”reflective” domain boundaries (RBC).

5.3.4 addSource
The command addSource(...) takes the following arguments-

1. Name : Name of the source

2. NumericParams : A python dictionary mapping parameter name
to its numeric value . The following numeric parameters can be
supplied.

• Intensity: source intensity (W/m2)
• CoordinateXCut: location of the source-plane. Only X-

coordinate is supplied.

3. StringParams: A python dictionaly mapping parameter name to
its string value. The following string parameters can be supplied.

• Type: Currently only ”Mode” source is available.

5.4. SOLVE BPM SYSTEM 31

4. NumericListParams: A python dictionary mapping parameter
name to a list of numeric values. The following string parameters
can be supplied.

• minYZPlane: If the mode-source is confined in YZ-plane,
then y- and z- coordinates of minimum of the source window
are specified.

• maxYZPlane: If the mode-source is confined in YZ-plane,
then y- and z- coordinates of maximum of the source window
are specified.

5. StringListParams: Currently unused.

5.3.5 removeSource

The command removeSource(...) takes name of the source as an
input parameter and deletes the source from the solver.

5.4 Solve BPM System
The following commands begin the simulations.

5.4.1 portToGPU

The command portToGPU(...) ports the simulations to the first
available GPU (with GPU id = 0). If you wish to port to another
GPU, please give the GPU id as an argument. This command must
be run before solving the system on the GPU.

5.4.2 solveSystem

The command solveSystem(...) begins BPM simulations. If portToGPU
is run before, then the BPM simulator uses GPU for matrix inversion
operations. If portToGPU is not run before, then the CPU is used for
all the computation.

32 CHAPTER 5. PYTHON INTERFACE

5.5 Retrieve data
Once the simulation is finished, the following commands help in
accessing the data stored by the BPM solver.

5.5.1 getSavedQuantitiesNames
The command getSavedQuantitiesNames(...) returns the names
of all the datasets stored by the BPM solver. The available dataset
names are listed in Chapter 6.

5.5.2 getAllSavedQuantitiesData
The command getAllSavedQuantitiesData(...) returns the stored
dataset values at all the vertices vertex as a 2D ”NumPy” array.
Leading dimension has number of dataset entries and trailing dimension
stores dataset values at each vertex for each of the datasets.

5.5.3 getSavedQuantityData
The command getSavedQuantityData(...) returns the stored dataset
value of the user-specified dataset at all the vertices vertex as a
”NumPy” array. User must specify name of the dataset as an input
argument. Leading dimension is one and trailing dimension stores
dataset values at each vertex for each of the datasets.

Chapter 6

Visualization of Results

Real and imaginary parts of X-, Y-, and Z- components of electric field
and magnetic flux are calculated on the 2D/3D grid of the waveguide.
They are stored in an hdf5 file. Additionally, a xdmf script file is written.
The output files are named ‘<out> bpm.xdmf’ and ‘<out> bpm.h5’,
where ‘<out>’ is the string input by user with the keyword Out in
File section of mode solver config file.

Effective indexes corresponding to the active mode at a specific
x-location are stored in ‘<out> Xloc <xidx> mode.csv’ file. Here,
<xidx> is the index of x-coordinate of cross-section of the waveguide at
which the mode is calculated. They can be viewed using a text editor or
a csv file viewer program. Similarly, the mode profiles corresponding to
the mode at a specific x-location are stored in ‘<out> Xloc <xidx> -
mode.h5’ file. The corresponding script file is named ‘<out> Xloc -
<xidx> mode.xdmf’. It can be viewed using paraview.

6.1 Quantities

Following quantities can be saved at the end of the simulation.

• ElectricField[X | Y | Z]: Real part of x-, y-, or z- compo-
nent of SVE of electric field.

33

34 CHAPTER 6. VISUALIZATION OF RESULTS

• ImElectricField[X | Y | Z]: Imaginary part of x-, y-, or z-
component of SVE of electric field.

• AbsElectricField: Magnitude of SVE of electric field.

• MagneticFlux[X | Y | Z]: Real part of x-, y-, or z- component
of SVE of magnetic flux.

• ImMagneticFlux[X | Y | Z]: Imaginary part of x-, y-, or z-
component of SVE of magnetic flux.

• AbsMagneticFlux: Magnitude of SVE of magnetic flux.

• ReverseElectricField[X | Y | Z]: Real part of x-, y-, or z-
component of SVE of reverse electric field. Only relevant when
bi-directional BPM simulation is performed.

• ImReverseElectricField[X | Y | Z]: Imaginary part of x-,
y-, or z- component of SVE of reverse electric field. Only relevant
when bi-directional BPM simulation is performed.

• AbsReverseElectricField: Magnitude of SVE of reverse elec-
tric field.

6.2 Visualization
The output xdmf file is an xml script which links the grid and other
attributes to the mode quantities. All the quantities stored in the
output hdf5 file can be viewed in the visualization software ‘Paraview’
using the following command.

>> paraview SiWG_bpm.xdmf

Appendix A

Notation and Acronyms

Acronyms

ABC Absorbing Boundary Condition

BPM Beam Propagation Method

CPML Convolutional Perfectly Matching Layer

FDTD Finite Difference Time Domain

RBC Periodic Boundary Condition
PML Perfectly Matching Layer

RBC Reflecting Boundary Condition
RHS Right Hand Side

SVE Slowly Varying Envelope

35

36 Acronyms

TE Transverse Electric
TM Transverse Magnetic

Bibliography

37

	1 Introduction
	1.1 Features
	1.2 Installation
	1.3 Licensing
	1.3.1 Purchasing the licenses
	1.3.2 Installation of SemiVi-activator
	1.3.3 License activation

	2 Theory of BPM Solver
	2.1 Derivation of BPM Equation
	2.2 Vectorial BPM Solver
	2.3 Scalar BPM Solver
	2.4 Solving BPM on Finite Difference Grid

	3 Configuration File Structure
	3.1 File Section
	3.2 Solver Section
	3.3 Source Section
	3.4 Boundary Section
	3.5 Plot Section
	3.6 Running Mode Calculation
	3.7 Output Files

	4 Configuring BPM Solver
	4.1 Keywords in File Section
	4.2 Keywords in Solver Section
	4.2.1 Available Settings in BPM solver

	4.3 Keywords in Source Section
	4.4 Keywords in Boundary Section
	4.5 Plot Section
	4.6 Miscellaneous Comments
	4.6.1 Coordinate Transformation in Mode Solver
	4.6.2 Selecting Numeric Method For Mode Solver

	5 Python Interface
	5.1 Import modules
	5.2 Constructors
	5.3 Setup the solver
	5.3.1 setGlobalParameters
	5.3.2 setDomainBoundary
	5.3.3 resetDomainBoundaryToReflective
	5.3.4 addSource
	5.3.5 removeSource

	5.4 Solve BPM System
	5.4.1 portToGPU
	5.4.2 solveSystem

	5.5 Retrieve data
	5.5.1 getSavedQuantitiesNames
	5.5.2 getAllSavedQuantitiesData
	5.5.3 getSavedQuantityData

	6 Visualization of Results
	6.1 Quantities
	6.2 Visualization

	A Notation and Acronyms
	Acronyms

