Circuit Solver Informative session

Saurabh Sant, Dr. sc. ETH saurabh64sant@gmail.com

May 12, 2025

Dr. Saura	bh Sant	(SemiVi	LLC)
-----------	---------	---------	------

LĒ▶ 툴 ∽요. May 12, 2025 1/28

イロト イヨト イヨト イヨト

Supported component, analyses and Parametrization

Python interface

- User-manual and examples
- Graphical user interface

6 Licenses

2 Supported component, analyses and Parametrization

Python interface

- User-manual and examples
- Graphical user interface

6 Licenses

・ロト < 団ト < 臣ト < 臣ト < 臣 や へで May 12, 2025 3/28 The circuit solver takes circuit netlists in spice format and performs desired set of simulations.

Salient features –

- Supports non-linear circuit solver,
- Parameterized electronic components (e.g. diode, BJT, MOSFET),
- Enables user-defined parameters and math functions,
- Python scripting enabled -
 - Component parameters can be modified and results can be read in python file,
 - Data-processing and optimization libraries in python can be readily used.
- User-defined functional models can be created in Python.
- Coupled electro-thermal solver enabled in DC, AC, and transient analyses.

Supported component, analyses and Parametrization

Python interface

- User-manual and examples
- Graphical user interface

6 Licenses

< ロ > < 合 > < き > < き > を き ぐ へ (*)
 May 12, 2025 5/28

The circuit solver supports the following components -

- Linear components R, L, C, and mutual-inductance,
- Voltage- and current-controlled switches,
- Lossless and lossy transmission lines, RC network,
- Non-linear components Diode, JFET, MOSFET, MESFET, and BJT,
- AC, DC, and transient I/V sources,
- Dependent sources VCVS, CCVS, VCCS, CCCS.
- *Subcircuits* can be parametrized and math functions can be defined.
- Heat generation enabled in R, diode, JFET, MOSFET, MESFET, and BJT,
- Heat conduction

We are open to collaborating with the users to add customized non-linear components.

The circuit solver supports the following analyses -

- DC ramp up of V/I sources
 - Employs non-linear solver based on damped-Newton's method
- AC analysis
 - Small-signal models of non-linear components
 - Desired bias point achieved by DC ramp
- Transient analysis time evolution of the given system
 - Backward Euler or Trapezoidal time-stepping methods
- Electro-thermal analysis Coupled solver for electrical and thermal network
 - Coupling of currents and voltages ↔ heat flow enabled
 - Coupled electro-thermal solver is enabled in all the DC, AC, and Transient analyses

Contact us if you need to do a specific analysis which cannot be performed with the existing features.

Parameterized electronic components

Parameter	Description	Default	Unit
L	channel length	1.	т
W	channel width	1.	m
AS	Source diffusion area	0.	m ²
AD	Drain diffusion area	0.	m ²
VTO	zero-bias threshold voltage	1.	V/K
KP	trans-conductance coefficient	0	$A/V^2/m^2$
			-

Table: MOSEET Parameters

.model nmos_depl NMOS (KP=200u VTO=0.6 PHI=0.6 GAMMA=0 LAMBDA=1E-4 + RDS=1E3 CGSO=1E-10 CGDO=1E-10 GGBO=1E-10 IS=1E-14) ... M1 Vout Vg Vs Vs nmos_depl

. . .

Figure: MOSFET model

Parameterized components + good documentation = Easy to create new libraries.

Contact us if you wish to add more parameters.

Dr. Saurabh Sant (SemiVi LLC)	Circuit Solver		May 12, 2025	8/28

```
.subckt Example 1
                         12
                              18 PARAMS: res1=2.0 res2=12.0
                     5
.PARAM res3={res2*2}
.PARAM res4={res3*5}
Rk
      5
           12
                res1
      18
           15
R1
                res4
         12 DC 0
Vprob 15
      18
            5 {2.0+I(Vprob)}
Rm
.ends
Vs
           0
               DC
                    1. AC 1. 0 SIN(0V 2.V 1.)
           2
              1.0
Ra
X 1
      2
           0
                     Example 1 PARAMS: res1=5.0 res2=0.01
                0
```

• Defining parameters and functions¹.

- Use Parametrization in main circuit and sub-circuits increased reuse-ability.
- Import external spice sub-circuit libraries.

User-defined parametrization broadens the possibilities of reuse of the libraries.

э

¹Parameters and functions are parsed using 'exprtk' parser.

Supported component, analyses and Parametrization

Python interface

- User-manual and examples
- Graphical user interface

6 Licenses

Python interface

Python-interface enables the user to perform the following tasks using python scripts.

• Reading a circuit from spice netlist file.

```
import circuitsolver as cs
import numpy as np
p = cs.circuit ()
p.readSpiceCircuitFile ("CircuitTrial.cir")
```

• Reading DC, AC, or transient solutions in python

```
p.getDCSolutionNumpyArray (analysisId=dc1)
p.getNodeTransCurrentNumpyArray(Node="X1 Vs", Component="R3", analysisId=dc1)
```

• Modifying component parameters in python script.

R3Now = p.getComponentParamVal (Component="X1 R3") p.setComponentParamVal (Component="X1 R3", Value=1E2)

- Using python scripts for calibration and/or optimization.
 - Optimization libraries in python can be used.

Python interfacing enables usage of python data-processing and optimization libraries while calling the circuit solver.

<ロト < 回ト < 回ト < 回ト

___ v (

Python-based functional models

Functional model: A quick and simple way of modeling functionality of a digital chip (for ex. gate-drivers).

• Define a python class and implement driver logic in updateOutputPinVoltages function.

```
class SimpleDriver (cs.functionalmodel):
    def updateOutputPinVoltages (self, isOutputPin, inputV, time):
        outV = []
        for i in range(numPins):
            if isOutputPin[i]:
                 if time > 1.0: # transient voltage ramp
                    outV.append (1.0)
        return outV
```

Create a circuit spice netlist with a generic N-pin instance (W1). List output pins (OUTPINS).

W1	1	0	DriChp	OUTPINS = (1)
Rm	1	out	1000	
Cn	out	0	1E-3	
.end				

• Link a new instance driv1 of user-defined driver class SimpleDriver to the N-pin instance (W1).

```
driv1 = SimpleDriver ()
p.setFunctionalModel ("W1", driv1)
p.solve ()
```

Functional modeling in python allows users to define python data processing functions (e.g. Fourier transforms) and verify the user-proposed logic in a realistic circuit simulation.

Dr. Saurabh Sant	(SemiVi LLC)
------------------	--------------

ヘロト 人間 ト イヨト イヨト

Python-based behavioural models

Behavioural model: A custom compact model of non-linear devices defined in python.

- Create custom diode model by inheriting the behaviouralmodel class.
- Calculate pin-currents from pin-voltages in getPinCurrents.
- Nonlinear devices: Calculate currents and ^{alj}/_{aVj} in getDerivativesAndPinCurrents. Auto-differentiation libraries can be used.
- Create a circuit spice netlist with a generic instance (WB0). List parameters.

```
R0 2 3 1000
V0 3 0 DC 10
WE0 2 0 MyDiode IS=0.0001
.end
```

• Link a new instance of user-defined driver class MyDiode to the instance (WBO).

```
dio1 = MyDiode ()
p.readSpiceCircuitFile ("RCckt.cir")
p.setBehaviouralModel ("WBO", dio1)
p.solve ()
```

```
import circuitsolver as cs
import autograd as ad
from autograd, variable import Variable
class MyDiode (cs.behaviouralmodel):
 def init (self):
    cs.behaviouralmodel.__init__(self)
    self. Is = 1E-6 \# member variables
 def isNonlinear (self):
    return True:
 def useNumericDifferentiation (self):
    return False;
  def setParameter (self, name, value):
    if (name == "IS"):
      self.Is = value
  def getDerivativesAndPinCurrents (self, inputV, time):
    bigV = Variable (inputV)
    va, vc = bigV[0], bigV[1]
    # Anode current
    Ia = self.Is * ad.exp((va - vc) / self.VT / self.N)
                      + 1E - 12 * (va - vc)
    # cathode current
    T_{C} = - T_{P}
    # computing gradients
    Ia.compute gradients()
    Ic.compute gradients()
    outI = np.append(Ia.data, Ic.data)
    outdI = np.append(Ia.gradient, Ic.gradient)
    out = np.append (outdI, outI)
    return out;
                          (日)
                                                         900
```

Python-based circuit optimizer

Figure: Resistive divider.

Dr. Saurabh Sant (SemiVi LLC)

May 12, 2025 14/28

イロト 不得 トイヨト イヨト

Supported component, analyses and Parametrization

Python interface

User-manual and examples

Graphical user interface

6 Licenses

The user-manual describes in detail the following -

- Equations corresponding to each of the components,
- Parameters of various components and their usage,
- Various analyses and numeric parameters suitable for them,
- Python interface and various functions therein.

Example circuit files and python scripts provided with the distribution can act as quick-references and a starting point for your case.

A thorough and clearly-written user-manual enables rapid development of your code.

Supported component, analyses and Parametrization

Python interface

4 User-manual and examples

Graphical user interface

6 Licenses

102. シックの 声 《声》《声》《日》

GUI - Main window

2025 18/28

(b) File menu

- New **Open new** circuitdraw **window**.
- Open File Selected '*.cktdr' file opened in a new window.
- Save File (As) Current (New) '*.cktdr' file is stored.
- Import Library Load all the models/subcircuits in selected *.lib file.
- Import Python Models Load functional or behavioural models in '*.py' file.
- Export Netlist Spice netlist of the circuit, libraries, analyses, and user-defined functions/parameters stored in spice format.
- Export Subcircuit Spice netlist of the circuit, and user-defined functions/parameters are stored in the file as a *sub-circuit*.
- Save As Svg Circuit diagram stored in SVG format.

GUI - Edit Menu

Edit	Add Linear	Add Nonlinear	Add Ana	aly
ii s	elect			h
□+ N	love Compon	ent	Ctrl+M	
G C	opy Compone	ent	Ctrl+C	
Û D	elete		Del	
6 R	otate Right		Ctrl+R	
ъ R	otate Left		Ctrl+L	
∆⊾ F	lip left-right			
₽ F	lip up-down			
OD	rag Screen			
Θz	oom		Ctrl+Q	
50 Z	oom To Fit			
tit E	dit Parameter	rs		
	elayed Set Pa	irams		
	(c)	Edit menu		

• SelectWhen active, draw any arbitrary rectangle in the circuit drawing window to select. The selected components and wires are painted in *red*.

- MoveWhen active, press left mouse button on the component, drag the cursor to the desired location, and relase it to move there.
- Copy When active, press left mouse button on a component, drag the cursor to the desired location, and relase it to paste.
- DeleteWhen active, left mouse click on component or wire will delete it.
- Rotate When active, left mouse click on component will rotate it.
- Flip When active, left mouse click on component will flip it.
- Drag Screen When clicked, 'Drag-screen' action is toggled. When 'Drag-screen' is active, drag the circuit drawing screen by press \rightarrow drag \rightarrow release left mouse button anywhere on the screen.
- I zoom Circuit is zoomed to the rectangle in the circuit drawing window
- Zoom to fit The circuit diagram is zoomed to fit the window
- Edit Parameters When active, left mouse click on any of the component will open the component properties window for that component.
- Delayed Set Params

Various actions can be 'toggled'. This means, if the given action is active, clicking on the action will deactivate it.

Dr. Saurabh Sant (SemiVi LLC)

Add Linear Add Nonlinear	Add Analyses/P
6° Wire	Shift+W +
Resistor	Shift+R
Capacitor	Shift+C
Inductor	Shift+L
Mutual Inductance	
Current Source	Shift+I
- Voltage Source	Shift+V
Controlled-Sources	•
Switches	*
RC-Network	
Transmission lines	•
Subcircuit Pin	
- Ground	
Functional Model	
Behavioural Model	

(d) Add linear component

Add Nonlinear	Add Analyses/Probes	Simulation Help
Diode	Shift+D	m 53 m
Bipolar Trar	isistor >	~~~~~
		NMOS
JFET	•	PMOS
IGBT	•	VDMOS
C From Librar	y	

(e) Add non-linear component

Various components are added to the drawing board as follows.

- Wire: Click on wire icon and click on or near any component pin. A wire starting at the pin will be drawn. Click on another pin or to end the wire.
- Component : Click on the component to activate it. Click on the drawing board to place the component.
- Mutual Inductance: Select any two more inductors (L) on the board and then click on Mutual Inductance to create a mutual inductance between the selected inductors.
- Functional/Behavioural model: Click on the respective icon. Select the model to be placed. Then click on the board to place the model icon.
- From Library: Click on the icon to open the dialog box listing all the available models of components. Filter them as per your requirement and select the component to place it.

A	dd Analyses/Probes	Simulatio
	DC Analysis)
	AC Analysis	
	Transient Analysis	
	🖉 Voltage Probe	
١,	🗞 Current Probe	
	Clear Probes	
đ	🗟 Configure Solver	

(f) Add Analyses Menu

Name

Spacing

Points per spacing 1

Start Freg [Hz]

End Freg [Hz]

Add AC Analysis

Decade

1E-3

1E6

(h) AC Analysis dialog box

🛛 Cancel 🛛 📿 OK

Add DC Analysis Name V/I Source V/I Source2 1 Contract Initial Value 0.000 Initial Value 0.000 **Final Value** 0.000 2 Final Value 0.000 \$ Step Size Max Step Size 0.000 0.000 (Cancel OK

(g) DC Analysis dialog box

	Add Tr	ansien	t Analysis		8
Name:					
Start Time [sec]	0.000	0	Max time-step [sec]	0.1	
e del minor formal	1.000		Min time-step [sec]	1e-05	
End Time [sec]	1.000	-	Increment	1.010	4
Time-step [sec]	0.001		Decrease	1.010	4
			O Cancel	Оск	

(i) Transient Analysis dialog box

Convenient way to add analyses, probes to the circuit –

- Add Analysis : Click desired analysis and a dialog box opens. Enter all the analysis parameters and press OK.
- Add V/I_probe : Activate V/I-probe and click on the component pin to place the probe. Remember that currents and voltages of the pins can be plotted only if the probes are placed.
- Clear Probes : Clear all the probs added to the circuit board.
- Configure Solver: Select solvers. set parameters for iterative solvers.

ヘロト 人間 ト 人 田 ト 人 田

nlysis Order:	Move Up	Move Down	Delete
---------------	---------	-----------	--------

(a) 'Analyses' tab in the side-pane

- Analyses are executed in the same order as the appear here.
- Move Up / Move Down : Move selected analysis up/down.
- Delete : Delete selected analysis.
- Double Click analysis to edit it.

New Parameter	New Function	Validate	Delete
---------------	--------------	----------	--------

(b) 'Functions and parameters' tab in the side-pane.

- New Parameter : Add new parameter (.PARAM).
- New Function : Add a new function (.FUNC).
- Validate : Check if any parameter used in the function is not defined yet.
- Delete : Delete selected parameter.

Plot Properti	es				
Select Analy	sis				*
Left Y Axis	Delete	Move To Right	Right Y Axis	Delete	Move To Left
Legend	Color	Туре	Legend	Color	Туре
4		Þ	4		×
Plot Propert	ies			Create Pl	ot
Axis min		max	1	label	log
x][
Y-L				9	
Y-R					
(

(c) 'Plot Properties' tab in the side-pane.

To plot all the curves stored by the current and voltage probes –

- Voltage and current probes are listed in the left and right lists.
- Click a curve in left list and click Move to right
- Click a curve in right list and click Move to left
- Delete : delete curves in respective lists.
- Specify min/max, labels of x-axis, left-y, or right-y axes in the text.
- logplot Check the boxes in 'log' column.
- Create Plot : To create a plot in a new window.

Fitting / Opt	imization							/
Device para	ms To fit:	Add	Delete		Objectives:	Ad	d	Delete
Comp	Param	Min	Ma	x	Name	Analysis	Id	Mode
4					٠			÷
Optimizatio	n:	Optimizati	on Method:	BF	GS			*
Start	End	Maximum	Iterations	0				0
Pause/	Resume	Terminate:	Error <					
Accept Fit	ted Params	Gradient n	orm <					

(d) 'Fitting/Optimization' tab in the side-pane.

- Add fit parameters: Activate left Add button. Click on any component and select the fit-parameter.
- Add objective: Click on right Add button. A dialog box (see right figure in this slide) will appear. Configure optimization.
- Specify optimization algorithm and other parameters.
- Accept fitted parameters : After optimization, store optimized values as the parameters values.

	Dialog 🤇
Objective Name:	Select Analysis 👻
Task: Minimize	Maximize Fit Constraint
Objective: (1 -	(-) x 1 - x 1.0
Limits of obi, integral	
Integration Limits: Sta	art: End:
Constraint: min	may Benalty
constraint: min	max
Expression:	Probe: 👻 Add
Fit to data in file: Bro	owse
csv file with experime	ntal data
	● <u>C</u> ancel 《 ● <u>O</u> K

(e) 'Fit Objective' window to add an objective.

To configure fit-objective -

- Select objective name, analysis, expression to be used for fitting, etc.
- In the case of fitting, provide a csv file containing experimental data corresponding to the objective.

Supported component, analyses and Parametrization

Python interface

User-manual and examples

B Graphical user interface

6 Licenses

 For ordering a license, along with the name and the organization details, please also provide -

- For the node-locked licenses: Ethernet mac address of the client machine on which the software will run. OR
- For the server licenses: Ethernet mac address of the server machine at the client organization.

If you purchased one or more node-locked licenses, you will receive the following license file by secured email.

NodeLockedLicense_<id>_<Info>.lic, where <id> stands for license id and <Info> stands for customer identification in short.

Copy the license file to /var/local/oesoft/licenses/ on the machine whose mac-address has been provided and change its access rights to 777.

If you purchased one or more server licenses, you will receive the following license file by secured email.

ServerLicense_<id>_<Info>.lic

Copy the license file to /usr/share/oesoft/licenses/ on the server machine whose mac-address has been provided.

イロト 不得 トイヨト イヨト

The End

Questions? Comments?

