USER GUIDE V-1

Circuit Solver
User Guide

SV

SemiVi LLC

Zollikon, Switzerland.

May 10, 2025

Contents

1

M1 TFeatured v oo oo 1
[L2 Tnstallationl 2
......................... 2
[1.3.1 Purchasing the licenses| 3
[L.3.2 Node-locked license activationl. 4
[.3.3 _Server license activationl 5

/ gl o 5

|2 Linear Components| 7
[2.1 Passive Components| 7
BT Resistord . - . .« v vttt 7
BI2 Inductod.o oo 8
2.1.3 Mutual inductancel00 8
2.1.4 Capacitor| 9

[2.2 Active components| 9
2.2.1 Voltage source| 9
222 Currentsource 10
2.2.3 Transient wavetorm shapes| 10

2.3 Dependent sources| 11
2.3.1 Voltage-controlled voltage source| 11
2.3.2 Voltage-controlled Current sourcef. 12
[2.3.3 Current-controlled voltage source| 13
2.3.4 Current-controlled current sourcel 14

24 Switched 15
2.4.1 Voltage-controlled switch| 15

iii

iv CONTENTS

2.42 Current-controlled switehl 16

2.0 Transmission line modeld. 16
251 RC Networkl. 16

[2.5.2 Lossless [Transmission Line (TL)[. 18

5.3 Lossy Transmission ling| 20

I3 Transfer-function or state-space models| 21
8.1 _Transfer-function modell 21
3.2 State-space model|]o 000 22
3.3 Circuit model of the system| 22
13.3.1 Transfer-function definitionl 23

3.3.2 State-space definition| 24

4 Non-linear Components| 25
4.1 Diode component|. oL 25
4.2 BJT component|. 28
4.3 JFET component|. 33
4.4 MOSFET component|. 37
4.5 MESKFET component|. 42

[Subcircuits and Parametric Equations| 47
.1 Node Voltages and Currents in Parameter Expressions] 49
b.1.1 External Subcircuit Library| 49
6__Thermal Circuit Solver] 51
6.1 Thermal components|. 51
6.1.1 Resistancel. L. 52

6.1.2 Capacitor] 52

6.1.3 Voltage source| 53

6.1.4 Current sourcel 53

6.2 Heat generation in electrical components|. 53
6.3 Setting Component Temperaturef 54
6.4 Example circuit| 55

7 Python Interface] 59
[7.1 Example python script| 60
(.2 Read Circuit Filel 0000 61

CONTENTS

(7.4 Add Analyses| o oL,
[[.5 Read Solution Datal

|18 Functional Modeling of The Driver Chip|
(8.1 Defining the functional modelf
8.1.1 Defining the model class|
8.1.2 Creating the driver instance|
8.1.3 Creating the driver in the netlist file]
8.1.4 Linking the functional model to the driver|. . .
(8.2 Python model library filef

19__Behavioural Model Interfacel
[9.1 Defining the behavioural model|
9.1.1 Behavioural model class definitionl

9.1.3 Examplecodel.
9.1.4 Linking the behavioural model to the driver| . .
[9.2 Python model library filef

110 Circuit Analyses|
(10.1 DCanalysis|
(10.2 ACanalysig| oo
[10.3 Transient analysis|
[10.3.1 Time-stepping|
(10.4 Solver settings|

67
67
69
69
70
70
71

73
73
73
76
76

78

81
81
82
83
84
84

87
87
89

vi

13 Nonk Circnit simulationl

[13.1 Full-bridge rectifier{
113.2 BJT amplifier|
13.3 MOSFET amplifier|.

114 Circuit Optimization|

[14.1 Optimizer functions|

114.1.2 Setup optimizer|.
114.1.3 Optimize|
14.2 Example Code]

|15 Circuit Drawing Application|

15.1.4 Save File Ag.
115.1.5 Import Library|
115.1.6 Import Python Models|.
115.1.7 Export Netlist|
115.1.8 Export Subcircuit|
[15.1.9 Save AsSvgl.

115.2.2 Move Component|.
115.2.3 Copy Component|.
0524 Deletd

15.2.5 Rotate Right/Left|
15.2.6 Flip Up-down/Right-left|
[15.2.7 Drag Screen|.

CONTENTS

101

....... 118

CONTENTS vii

15.3.3 Mutual Inductor] 124
[15.3.4 1/V sources and ground| 124
................ 124

[53.6 Switched« v v oo 124
[[5.3.7 Transmission lined 125
[15.3.8 RC-Networkl. 125
0539 Subcirenit Pinl 125
[5.3.10Functional modell 125
[5.311Behavioural modell 126
(15.4 Add Nonlinear Menul 126
[15.4.1 Nonlinear components| 127
[15.5 Add Analyses/Probes Menu| 127
[155.1 DC Analyses 128
15.5.2 nalyses| 128
15.5.3 Transient Analyses| 128
15.5.4 Voltage/Current probes| 129
0555 Clear Probed 130
[15.5.6 Configure Solver| 130
[5.6 Simulation Menul v v v v v vt 130
BT Runl . . v oot oo 130
[15.6.2 Pause/Resume| 130
[[5:6.3 Stop|« .o 130
......................... 131
[15.7.1 Amalyses|. 131
05.7.2 Functions and Paramefers 131
115.7.3 Components| 132
15.7.4 Plot Properties| 132
15.7.5 Fitting/Optimization|. 132

|A Notation and Acronyms| 137

............................ 137

Chapter 1

Introduction

The circuit solver provided with the OESoft package performs various
analyses of electronic circuit. It takes text files of circuit netlists in
‘spice’ format, and parses them to create a circuit matrix. The solver
includes Newton’s method based nonlinear solver for solving electronic
circuits with nonlinear components. After a circuit is solved, all the
solution quantities, i.e. all the node voltages and currents of each of
the analysis (AC/DC/transient) are stored in a ‘csv’ file.

1.1 Features

The circuit solver has the following features.

e The circuit solver can perform a DC ramp, AC analysis at a
fixed DC bias, and a transient analysis.

e A Newton’s method based nonlinear solver is included. Since
most of the electronic components exhibit nonlinear characteris-
tics, a nonlinear solver is used in their circuit analyses.

e Parameters and functions can be defined and used in the main
circuit or in a subcircuit. They are parsed using ‘exprtk’ parser.

e Values of various components can be parameterized, increasing
reuse-ability of the circuit file.

2 CHAPTER 1. INTRODUCTION

1.2 Installation

OESoft currently supports software installation on various linux distri-
butions. The software installer is available in debian package (*.deb
file) and in RPM format (*.rpm file).

Note, that if you have downloaded mkl version of the Circuit Solver,
the following package needs to be installed manually by you before
installing the circuit solver from the installer package.

o Intel math kernel libraries (released in 2020 or later), which
include distributions of open-mp, pardiso, etc. specific for intel
Processors.

The circuit solver sources mkl functions from the above installation.
These functions can offer speed-up in the calculations on Intel proces-
sors. The mkl package can be downloaded from Intel website.
If the circuit solver without mkl acceleration is downloaded, then
installation of the above package is not necessary.
Once Intel math kernel libraries are installed, download the
installer on the local machine. The installer file named CircuitSolver_amd64.deb
will appear in the Downloads directory. Go to the directory using cd
command. Use the following command to install the CircuitSolver
from the installer.

>> sudo apt install ./CircuitSolver_amd64.deb

Alternately, one may use dpkg to install the software and use apt
to install missing dependencies as follows.

>> sudo dpkg -i ./CircuitSolver_amd64.deb
>> sudo apt install -f

You need to have root access to install the software on your
machine.

1.3 Licensing

Two types of licenses can be purchased for OESoft circuit solver.

1.3. LICENSING 3

e Node-locked license: Locked to the user’s machine. The circuit
solver software can run only on this machine. Both, unlimited
and limited node-locked licenses of the circuit solver can be
purchased from OESoft.

o Server license: A server running on one of the machines in the
client organization. All the other machines contact the server
to fetch the software licenses. The server license is locked to the
specific machine in the client organization. Only limited server
licenses of the circuit solver can be purchased.

Unlimited node-locked licenses enable unlimited number of simul-
taneous executions of the circuit solver on the client machine. With
limited node-locked licenses, only the specified number of simultaneous
executions of the circuit solver can be performed on the machine. The
node-locked license limits the usage of the circuit solver only to the
user’s machine.

With limited server licenses, only the specified number of simultane-
ous executions of the circuit solver can be performed on all the machines
in the client organization together. A server license enables usage of
maximum the computational capability at the client organization.

1.3.1 Purchasing the licenses

The clients can place order on OESoft website or by contacting our
sales-persons. Along with the name and the organization details, the
clients need to provide —

e For the node-locked licenses: Ethernet mac address of the client
machine on which the software will run.
OR

e For the server licenses: Ethernet mac address of the server
machine at the client organization.

Ethernet mac address of the client machine can be obtained by
running the following command on the client machine.

>> ifconfig ethO

4 CHAPTER 1. INTRODUCTION

The above command outputs various ethO config settings. Search
for the keyword ether and write down the mac-id following ether.
The mac-id mush have the following format — xx:xx:Xx:XX:XX:XX,
where x stands for a number (0-9) or a letter (a—f). You need to send
this mac id to us to receive the licenses. The same procedure can be
followed on the server machine to receive its mac-id.

Sometimes, >> ifconfig ethO does not give any output. In that
case, please run the following command.

>> ifconfig -a

Search for the interface which begins with enp or eno. Kindly provide
mac address of that interface. If interfaces which begin with both enp
and eno are present, priority is given to enp.

We will process the request and send the license files on a secured
email. The license files need to be activated on the same machines
using the license key which is emailed separately. The activation
procedure is described below.

1.3.2 Node-locked license activation

If you purchased one or more node-locked licenses, you will receive the
following license file by secured email.

1. NodeLockedLicense_<id>_<Info>.lic, where <id> stands for
license id and <Info> stands for customer identification in short.

Execute the following commands with admin access rights—

>> sudo cp NodeLockedLicensex*.lic \
/var/local/oesoft/licenses/ONodeLockedLicense.lic
>> sudo chmod 666 /var/local/oesoft/licenses/ONodelLockedLicense.lic

Any additional node-locked license purchased from us can be
activated in the same way as above. Every additional activated
license file can be stored at /var/local/oesoft/licenses by the
name <i>NodeLockedLicense.lic, where i = (0,1,2,...49). The
circuit solver will read the license files and lock the first available
license.

1.3. LICENSING)

1.3.3 Server license activation

If you purchased one or more server licenses, you will receive the
following license files by secured email.

1. ServerLicense_<id>_<Info>.lic

Copy the above files to the server machine and execute the following
commands with admin access rights—

>> sudo cp ServerLicense*.lic \
/usr/share/oesoft/licenses/0OServerLicense.lic

Do not forget to add the following line to .bashrc file of each of
the users.

export OESOFT_LICENSE_SERVER=’<port>Q<server>’

Any additional server license purchased from us can be stored in the
same way as above. Every additional activated license file can be stored
at /usr/share/oesoft/licenses by the name <i>ActivelLicense.lic,
where i = (0,1,2,...49). The circuit solver will read the license files
and lock the first available license.

1.3.4 Testing

User-guides of all the software provided by OESoft are stored at the
location /opt/oesoft/userguides/.
Tutorials of all the software provided by OESoft are stored at the
location /opt/oesoft/tutorials/.
Copy any one of the tutorial directory from /opt/oesoft/tutorials/CircuitSol
to your working directory and run the spice circuit file in it using the
following command.

>> CircuitSolver <filename>.cir

If licenses are activated, then the above command should not give
any license error.

Chapter 2

Linear Components

Linear components can be separated into passive components, active
components, and dependent sources. They are described below.

2.1 Passive Components

2.1.1 Resistor

A new line starting with the letter R defines a resistor. The first string
is the component name and the next two strings are names of the
nodes connected by the resistor. For example, a resistor of value r
Ohms is instantiated between the nodes nl1 and n2 by the following line.

Rb nl n2 r
It connects voltages between the two nodes by the following relation-
ship.

V(’fl2) - V(nl) = dpl—sn2T (21)
where I1_p2 is DC/AC/transient current flowing from node nl to
n2, V(nl) and V(n2) are DC/AC/transient voltages at nl and n2.

Temperature response of the resistor can be defined using the
following equation.

R(T) = R+ CT1- (T — Tnom) + CT2 - (T — Tnom)* (2.2)

7

8 CHAPTER 2. LINEAR COMPONENTS

The parameters CT1, CT2, and TEMP can be defined together with the
resistor definition as follows.

Rb nl n2 r CT1=0.01 TEMP=300.

2.1.2 Inductor

A new line starting with the letter L defines an inductor. The first
string is the component name and the next two strings are names of the
nodes connected by the inductor. For example, an inductor of value [
Henri is instantiated between the nodes nl and n2 by the following line.

La nil n2 1

In AC analysis, the inductor connects voltages between the two nodes
by the following relationship.

V(n2) —V(nl) = Ini—na - jwl (2.3)

where I,1_,n2 is phasor current flowing from node nl to n2, V(nl)
and V' (n2) are phasor voltages at nl and n2.

In transient analysis, the inductor connects voltages between the
two nodes by the following relationship.

. dInl—)nQ

V(n2) —V(nl) =1 7

(2.4)
where I,,1_,p2 is transient current flowing from node nl to n2, V(nl)
and V' (n2) are phasor voltages at nl and n2.

In DC analysis, the inductor is replaced by a 1nOhm resistance.

2.1.3 Mutual inductance

Each new line starting with the letter K creates a mutual inductance
between the inductances whose names are listed after the first word.
First word after the inductor names is regarded as a mutual coupling
coefficient m < 1.0. More that two inductors can be listed as coupled
inductances. In this case, the coupling coefficient between each pair of
inductances is set to m.

2.2. ACTIVE COMPONENTS 9

If mutual inductance between any two inductors is defined on
multiple lines, the previously defined values are overwritten by the
latest value.

Mutual inductance can be used to model a transformer, or an
electric motor, etc.

2.1.4 Capacitor

A new line starting with the letter C defines a capacitor. The first
string is the component name and the next two strings are names of the
nodes connected by the capacitor. For example, a capacitor of value ¢
Henri is instantiated between the nodes nl and n2 by the following line.

Ca nl n2 c

In AC analysis, the capacitor connects voltages between the two nodes
by the following relationship.
V(n2) ~ Vn) : (25)
n2) —V(nl) = - — .
nl—n2 jwc

where I,1_,2 is phasor current flowing from node nl to n2, V(nl)
and V' (n2) are phasor voltages at nl and n2.

In transient analysis, the capacitor connects voltages between the
two nodes by the following relationship.

d(V(n2) — V(nl))
dt

(2.6)

In1—>n2 =cC-

where ;1,2 is transient current flowing from node nl to n2, V(nl)
and V' (n2) are phasor voltages at nl and n2.
In DC analysis, the capacitor is replaced by a 1020 Ohm resistance.

2.2 Active components

2.2.1 Voltage source

A new line starting with the letter V defines a voltage source. The
first string is the component name and the next two strings are names

10 CHAPTER 2. LINEAR COMPONENTS

of the nodes connected by the voltage source. The strings after than
define the AC, DC, and transient voltage. For example, a voltage
source is instantiated between the nodes nl (positive node) and n2 by
the following line.

Vinput nl n2 DC 0.0 AC 1.0 90 SIN(0.8 0.025 100.)

The number after DC sets DC voltage which is used in DC analysis.
The two numbers after AC set phasor voltage and phase (in degrees)
of the voltage source, which is used in AC analysis. The string after
that specifies the type of the transient waveform together with the
parameters in parentheses (...).

2.2.2 Current source

A new line starting with the letter I defines a current source. The
first string is the component name and the next two strings are names
of the nodes connected by the voltage. The strings after than define
the AC, DC, and transient voltage. For example, a current source is
instantiated from node nl to n2 by the following line.

Iinput n1 n2 DC 0.0 AC 1.0 90 SIN(0.8 0.025 100.)

The number after DC sets DC current which is used in DC analysis.
The two numbers after AC set phasor current and phase (in degrees)
of the current source, which is used in AC analysis. The string after
that specifies the type of the transient waveform together with the
parameters in parentheses (...).

2.2.3 Transient waveform shapes

Following transient waveform types are supported.

e SIN(pl p2 p3 ...) Sinusoidal pulse is used. Parameters listed
in the parentheses have the following meaning.

1. p1 DC bias (Volts),
2. p2 AC peak voltage (Volts),

2.3. DEPENDENT SOURCES 11

3. p3 frequency (Hertz),
4. p4 time delay (sec),
5. p5 exponential decay factor in the prefactor (1/sec),
6. p6 initial phase (degrees),
e PWL(...) Piece-wise linear waveform. List of time and volt-
age at that time are specified in parantheses. For example,

PWL(0. 0. 1. 1. 2. 1. 3. 0.) specifies voltage waveform which
where V(0) =0, V(1) =1, V(2) =1, and V(3) = 0.

e PULSE(...) Rectangular pulse is used. Parameters listed in the
parantheses have the following meaning.

pl voltage at logical zero,

p2 voltage at logical one,

p3 delay time,

p4 rise time,

p5 fall time,

p6 pulse width of logical one,

NS o W

p6 pulse period.

2.3 Dependent sources

2.3.1 Voltage-controlled voltage source

A new line starting with the letter E defines a [Voltage-controlled|
[Voltage Source (VCVS)| The first string is the component name. The
next two strings are names of the positive and negative nodes of
controlled-voltage source. The next two strings are the names of
positive and negative controlling voltage sources in the [VCVS] For
example, a[VCVS| of voltage gain v between the nodes N+ and N—
with the controlling source between NC+ and NC— is instantiated
by the following line.

Eb N+ N- NC+ NC- v

12 CHAPTER 2. LINEAR COMPONENTS

It connects voltages between the four nodes by the following relation-
ship.
V(N+)-V(N=)=v-[V(NC+) = V(NC-)] (2.7)

v

where V(N+), V(N-), V(NC+), and V(NC—) are DC/AC/transient
voltages at respective nodes.

Nonlinear [VCVS|

A [VCVS| with nonlinear dependence on the input voltage is defined by
specifying higher degree polynomial coefficients as follows.

Eb N+ N- NC+ NC- v1 v2 v3 ...

The resulting components links voltages between the four nodes as
follows.

Vin = [V(NC+) = V(NC-)]V(N+) = V(N—=) =uvl-Vi, +v2- V2 +v3- V3 +
(2.8)

The nonlinear [VCVS]is solved by the nonlinear circuit solver using
Newton’s method.

2.3.2 Voltage-controlled Current source

A new line starting with the letter G defines a [Voltage-controlled]
[Current Source (VCCS)| The first string is the component name. The
next two strings are names of the nodes of the controlled-current
source. The next two strings are the names of positive and negative
controlling voltage sources in the[VCCS| For example, a[VCCS|of trans-
conductance g between the nodes N+ and N— with the controlling
source between NC+ and NC'— is instantiated by the following line.

Gb N+ N- NC+ NC- g
It connects voltages between the four nodes by the following relation-
ship.

Inyn— =0 [V(NC+) = V(NC-)] (2.9)
where I,y is the current from N+ to N—, while V(NC+), and
V(NC—-) are DC/AC/transient voltages at respective nodes.

2.3. DEPENDENT SOURCES 13

Nonlinear [VCCS|

A [VCCE] with nonlinear dependence on the input voltage is defined by
specifying higher degree polynomial coeflicients as follows.

Gb N+ N- NC+ NC- gl g2 g3 ...

The resulting components links voltages between the four nodes as
follows.

Vin = [V(NC+) = V(NC)|Intn- =gl-Vin+92- Vi +93- Vi +--
(2.10)

The nonlinear [VCCY| is solved by the nonlinear circuit solver using
Newton’s method.

2.3.3 Current-controlled voltage source

A new line starting with the letter H defines a [Current-controlled|
[Voltage Source (CCVS)l The first string is the component name. The
next two strings are names of the positive and negative nodes of
controlled-voltage source. The next string is name of the voltage
source from which the current is measured. For example, a [CCVY]
of trans-resistance h between the nodes N+ and N— with Vname is
voltage source name through which controlling current is measured is
instantiated by the following line.

Hc N+ N- Vname h

It connects voltages between the four nodes by the following relation-
ship.
V(N+) — V(N—=) = h- [I(Vname)] (2.11)

where V(N+) and V(N —) are DC/AC/transient voltages at respective
nodes and I(Vname) is current through the voltage source Vname.
Nonlinear [CCVS|

A [CCVY| with nonlinear dependence on the input current is defined by
specifying higher degree polynomial coefficients as follows.

14 CHAPTER 2. LINEAR COMPONENTS

Hc N+ N- Vname hl h2 h3 ...

The resulting components links voltages between the four nodes as
follows.

V(N+) —V(N-) = hl - I(Vname) + h2 - I(Vname)? + h3 - I(Vname)® + - - -
(2.12)

The nonlinear [CCVS]is solved by the nonlinear circuit solver using
Newton’s method.

2.3.4 Current-controlled current source

A new line starting with the letter F defines a [Current-controlled]
[Current Source (CCCS)| The first string is the component name. The
next two strings are names of the nodes of controlled current source.
The next string is name of the voltage source from which the controlling
current is measured.

For example, a [CCCS| of trans-resistance f between the nodes
N+ and N— with Vname as voltage source name through which
controlling current is measured is instantiated by the following line.

Fc N+ N- Vname f

It connects voltages between the four nodes by the following relation-
ship.
Inysn— = h-[I(Vname)] (2.13)

where Iyy_,n_ is the current from N+ to N— while I(Vname) is
current through voltage source with name Vname.
Nonlinear [CCCS|

A [CCCE| with nonlinear dependence on the input current is defined by
specifying higher degree polynomial coefficients as follows.

Fc N+ N- Vname f1 f2 £3 ...

2.4. SWITCHES 15

The resulting components links voltages between the four nodes as
follows.

Iy N = f1-I(Vname) + f2 - I(Vname)? + f3 - I(Vname)® + - - -
(2.14)

The nonlinear [CCVY]is solved by the nonlinear circuit solver using
Newton’s method.

2.4 Switches

2.4.1 Voltage-controlled switch

A new line starting with the letter S defines a switch. The first string
is the component name. The next two strings are names of the nodes
between which the switch is connected. The next two strings are
the names of positive and negative controlling voltage sources in the
switch. For example, a switch between the nodes N+ and N— with
the controlling source between NC'+ and NC'— is instantiated by the
following line.

.model Sw Switch(ROFF=1E12 RON=1E-2 VT=0.5 VH=0)
Sb N+ N- NC+ NC- Sw

When the switch is off, a resistor of resistance ROFF is connected
between the nodes, N+ and N—. In the on-state of the, the switch
resistance takes the value of RON.

The switch has three modes of operation depending on VH.

If VH is zero, switching happens when difference Vin = V(NC+) —
V(NC-) is equal to VT.

If VH is positive, the switch shows hysteresis. That is, the switch
turns on when Vin rises above VT 4+ V H, and turns off when Vin
falls below VT — VH.

If VH is negative, the switch resistance smoothly transitions between
RON and ROFF. The transition occurs between Vin of VI'4+ V H and
VT — V H. The transition follows a linear fit to the logarithm of the
switch’s conduction.

16 CHAPTER 2. LINEAR COMPONENTS

2.4.2 Current-controlled switch

A new line starting with the letter W defines a switch. The first string
is the component name. The next two strings are names of the nodes
between which the switch is connected. The next string is name of
the voltage source from which the controlling current is measured. For
example, a switch between the nodes N+ and N— with Vname as
voltage source name through which controlling current is measured, is
instantiated by the following line.

.model Sw Switch(ROFF=1E12 RON=1E-2 IT=0.5 IH=0)
Wb N+ N- Vname Sw

When the switch is off, a resistor of resistance ROFF is connected
between the nodes, N+ and N—. In the on-state of the, the switch
resistance takes the value of RON.

The switch has three modes of operation depending on IH.

If TH is zero, switching happens when difference I(Vname) is equal
to IT.

If IH is positive, the switch shows hysteresis. That is, the switch
turns on when I(Vname) rises above IT + I H, and turns off when
I(Vname) falls below IT — IH.

If TH is negative, the switch resistance smoothly transitions between
RON and ROFF. The transition occurs between I(Vname) of IT + IH
and IT — I H. The transition follows a linear fit to the logarithm of
the switch’s conduction.

2.5 Transmission line models

2.5.1 RC Network

A new line starting with the letter U defines a 4-terminal component
which models a RC network as a lumped model consisting of user-
specified number of RC segments. The first string is the component
name. The next three strings are names of the nodes on the left and
the right side of the (see Fig. [2.2). The next string specifies the
RC model.

2.5. TRANSMISSION LINE MODELS 17

Ry Ry Rs
NL=AAN—+ ANV N3
e} C
N2e oN3

Figure 2.1: Equivalent circuit of the RC-network component having
two RC-segments. Note, there are always N + 1 resistors and N
capacitors in the network.

For example, a RC network between the nodes N1, N2, and N3 is
instantiated by the following line.

.model RC1 TL (N=2 R=1 C=1)
Uname N1 N2 N3 RC1

Note, that for a given N segment RC network, there are always
N +1 resistors and N capacitors in the network, to make it symmetric
with respect to nodes N1 and N2.

Lengths of RC segments in the network are in geometric progression,
with longest segment being at the center and shortest segments at
the N1 and N2 ends. K is set as the constant of geometric progression.
With this arrangement, frequency response of the network remains the
same independent of N, for a sufficiently large value of N.

All the input parameters of the RC network are listed in Table
If ISPERL is greater than zero, then capacitors in the RC network are
modeled as diodes with depletion capacitance of CPERL per meter and
leakage current of ISPERL per meter. The diodes are connected such
that anodes of all the diodes are connected to N3.

Note: For a RC network, number of lumped RC-segments must be
specified while defining the component. They cannot be changed
afterwards.

18 CHAPTER 2. LINEAR COMPONENTS
Table 2.1: Input parameters of the RC network
Parameter Description Default | Unit
N Number of lumped RC-segments 6 -
RPERL Resistance per meter 1 Q/m
CPERL Capacitance per meter 1 F/m
L Length of the RC network 1 meter
K Propagation Constant 2 -
FMAX Maximum Frequency of interest 1G Hz
TC1 Linear temperature coefficient of resistor 0 -
TC2 Quadratic temperature coefficient of resistor 0 -
TEMP Temperature 300 K
ISPERL Diode leakage current per meter 0 A/m

2.5.2 Lossless [TL]

A new line starting with the letter T defines a 4-terminal component
which mimics a lossless[TT] as a distributed network. The first string
is the component name. The next four strings are names of the nodes
on the left and the right side of the (see Fig. . The next string
specifies the [TL] model.

For example, a [TT] between the nodes N1, N2, N3, and N4 is
instantiated by the following line.

.model T11 TL (Z0O=1 TD=1)
.model T12 TL (Z0=1 F=1 NL=1)
Tname N1 N2 N3 N4 T11

Input parameters of the lossless [TL] component are listed in Ta-
ble Either the parameter TD must be specified or F and ND must
be specified. If F and ND are set, then TD is calculated as %

Implementation of the distributed [TL] model is shown in Fig. 2:2}

2.5. TRANSMISSION LINE MODELS 19

Table 2.2: Input parameters of the lossless

Parameter Description ‘ Default | Unit
Z0 input impedence = % 1 Q
D delay 0 sec
F frequency 1 Hz
ND normalized length of 0 -

* N4

Figure 2.2: Equivalent circuit of the lossless transmission line. The
parameters, input impendence (Z0) and delay (A) are specified by the
user.

20 CHAPTER 2. LINEAR COMPONENTS

Table 2.3: Input parameters of the lossy
t | Unit

Parameter ‘ Description ‘ Defaul
L Inductance per meter 1 H/m
C Capacitance per meter 1 F/m
R Resistance per meter 1 Q/m
LEN Length of 0 meter

2.5.3 Lossy Transmission line

A new line starting with the letter 0 defines a 4-terminal component
which models a lossy[TL] as a distributed network. The first string is
the component name. The next four strings are names of the nodes
on the left and the right side of the [T] The next string specifies the
[TT] model.

For example, a [TT] between the nodes N1, N2, N3, and N4 is
instantiated by the following line.

.model T11 TL (L=1 C=1 R=1 LEN=1)
Oname N1 N2 N3 N4 T11

Input parameters of the lossy [TL] are listed in Table

Note: |Alternating Current (AC)|response of lossy component is
not modeled. In[AC]analysis, a lossy [TT]is treated as a lossless [TT]

Chapter 3

Transfer-function or
state-space models

Frequency response of a linear time invariant (LTT) system is given
by the transfer-function. Modeling the temporal response of the
system requires state-space representation of the system. This chapter
describes modeling of such a system when transfer-function or state-
space representation of the system is known.

3.1 Transfer-function model
A LTT system which takes a time-varying scalar signal z(¢) as input and

outputs time-varying signal y(¢), is modeled by the transfer function
as follows,

no+ny-s+mng-s24---
mo+my-s+mg-s24 -
N i
n;- 8
~ Zomis (3.1)

M i
0 mi-S

21

22 CHAPTER 3. STATE-SPACE MODELING

Here, m;, n; are real numbers and s = jw = 527 f is frequency of the
input signal. M and N are positive integers, with M is the order of
the system.

3.2 State-space model

Any generic LTT system with time-varying input (z(t)) and time-
varying output (y(t)), is modeled by the following set of differential
equations.

Gir=a11q1 + -+ a1, mqm + bix(t)
Gi = ai1q1 + -+ ai mgm + bz (t)

qM = aymiqu + -+ anm, gy + bya(t)
y(t) =ciq1 + - +cugu + D - x(t) (3.2)

dgi
dt

In the above, a; i, b;, ¢;, and D are real numbers, ¢; =
time derivative of state variable ¢(t).

The above set of differential equations can be written in matrix
notation as follows.

dq

represents

¢ = Anrxar - G+ B - z(t) (3.3)
y(t) = Cixnm - ¢+ D - x(t) (3.4)

Here, M is system order, A is a M x M square matrix, B and C are
vectors of length M, and D is a scalar. ¢ is a vector of length M of
state-variables of the system.

Note: The transfer-function model described in Sec. 3] and state-
space model described in Sec. [3.2] are two ways of describing the same
LTT system. That is, specifying the system with any one of the these
two models is sufficient.

3.3 Circuit model of the system

The LTT system described above is modeled in the circuitsolver by
controlled sources. The voltage/current at the controlling source acts

3.3. CIRCUIT MODEL OF THE SYSTEM 23

as an input signal (z(t)) whereas the output signal y(t) is the output
V /I source.

Thus, if the LTI system is modeled as a (see Chapter
Sec. , input signal z(t) is the voltage difference between input pins
N3 and N4, while signal y(t) is a time-varying voltage source between
output pins N1 and N2.

For a [VCCS] input signal z(t) is the voltage difference between
input pins N3 and N4, while signal y(t) is a time-varying current source
connected between output pins N1 and N2.

For a[CCVY] input signal x(t) is the current through the controlling
voltage source, while signal y(t) is a time-varying woltage source
connected between output pins N1 and N2.

For a[CCCS| input signal z(t) is the current through the controlling
voltage source, while signal y(¢) is a time-varying current source
connected between output pins N1 and N2.

3.3.1 Transfer-function definition

A [VCV§|system, whose response is given by the transfer-function given
by Eq.

Y (s) ng +nq -S4+ ng - s>
H(s) = = 3.5
(s) Xs mg +mq -8+ mo -2+ msg-sd (3.5)

can be specified as follows.

Eb N1 N2 N3 N4 TransFunc Mmat=(m0 ml1 m2 m3) Nmat=(nO nl n2)

The above line defines a[VCVS|component which links voltages between
the four nodes by the transfer function, such that V(N1) — V(N2) =
y(t) and V(N3) — V(N4) = z(t). The keyword TransFunc denotes
that transfer-function of the system is provided. Note, that order of
the system is defined by the number of entries in Mmat. Number of
entries in Nmat is less than that in Mmat. Unspecified higher order
entries of Nmat are set to 0.

24 CHAPTER 3. STATE-SPACE MODELING

3.3.2 State-space definition

If, instead of the transfer-function, state-space model of the [VCVY
system is known and given by Eq.

g1 = a1,1q1 + a1,2q2 + b1z(1)
Go = a21q1 + a2,2q2 + bax(t)
y(t) = c1q1 + caqa + D - x(t) (3.6)

The [VCVS| system can be modeled by the following line.
Eb N1 N2 N3 N4 StateSpace Amat=(all al2 a21 a22) Bmat=(bl b2) Cmat=(

The keyword, StateSpace denotes that state-space model of the system
is provided. Notice, that parameter names Amat lists entries of matrix
A in row major format. The parameter names Bmat and Cmat list
entries of the respective vectors, while D lists the scalar.

Entry at a specific row and column in the matrix/vector can
be specified by using the parameter name in the following format-
<Matrix>_r_c. For example, to set entry in the 2nd row, 1st column of
A matrix, specify it with the parameter name A_2_1. Notice the use of
A instead of Amat as prefix. Also, notice that row and column ids start
from one (instead of zero). Entry a21 of matrix A will be overwritten
by the value of the parameter A_2_1. The parameter A_2_1 can take
parametric entries as well. For example, if parl is defined in the
subcircuit, then A_2_1={par1} is a valid assignment.

Chapter 4

Non-linear Components

Circuits with nonlinear components (e.g. diodes) cannot be solved by
a direction matrix equation (A -z = b) solver. In the case of nonlinear
devices, the circuit matrix is a function of the solution variable (i.e.
A(z) -z = b(x)). Such a system needs to be solved by a nonlinear
solver method such as ‘Newton method’.

The circuit solver employs a damped Newton’s method proposed
by Bank-Rose in solving the nonlinear equation. For that purpose,
derivatives of the node equation w.r.t. solution variables are calculated
and used in the circuit matrix. Available nonlinear components are
described below together with the node equations corresponding to
each of the nonlinear component.

4.1 Diode component

A new line starting with the letter D defines a diode. The first string
is the component name and the next two strings are names of node
connected to the anode and cathode. The next string is the name of
the diode model. The next three numbers are, respectively, diode area,
initial DC voltage, and junction temperature.

For example, a diode of area scaling factor a is instantiated between
anode N+ and cathode N— by the following lines. Note, that the
model ‘DalN4004’ with various hyper-parameters of the diode is also

25

26 CHAPTER 4. NONLINEAR COMPONENTS

nl

n2

Figure 4.1: Equivalent circuit of the diode component

written.

.model DalN4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u
+ CJ0=1.E-9 M=0.333 N=2 TT=1E-6)
Di N+ N- DalN4004 a

A resistor in series with and a capacitor in parallel to the ‘ideal’
diode are present in the above model. Together with them, equivalent
circuit of the diode is shown in Fig.

Parameters accepted by the ‘diode’ component are listed in Table 1]
together with their meaning, default value, and the unit.

The following equations are solved in the ‘ideal’ diode.

Inl%nZ :Id+IC (41)
Vd=V(ns)—V(n2) (4.2)
V(nl) —V(n2)=RS-(Id+ Ic)+Vd (4.3)
Id = area - (Itwa — Irev) (4.4)

Vd
Iwa =15 (eXp (UTT) - 1) + Gmin - (V) (4.5)

4.1. DIODE COMPONENT

Table 4.1: Input parameters of the diode component

27

Parameter Description Default | Unit
IS saturation current 10714 | A/m?
RS series resistance 0 Q
N emission coefficient 1 -
BV breakdown voltage 1010 \Y
IBV current at breakdown voltage 107> | A/m?
CJo zero-bias junction capacitance 0 F/m?
vJ junction potential 0.8 \%
M grading coefficient 0.5 -
TT transit time 0 sec
FC coefficient in forward-bias depletion capacitance 0.5 -
EG band-gap of the diode material 1.1 eV

TEMP junction temperature 300. K
XTI IS temperature exponent 3.0 -
TBV1 BV temperature coefficient (linear) 0 1/K
TBV2 BV temperature coefficient (quadratic) 0 1/K?
TRS1 RS temperature coefficient (linear) 0 1/K
TRS2 RS temperature coefficient (quadratic) 0 1/K?

28 CHAPTER 4. NONLINEAR COMPONENTS

— B B
Irev:IBV' (exp((‘/d—i_‘/))_1> v

nVr

Junction capacitance parallel to the diode is modeled as follows.

Cjo = area - (Cd + CYj) (4.7)
va\ v
Cj=CJO-([1-— 4.8
j (1-75) (4.
15 Vd
Cd=TT - — -exp(— 4.9
Ve p(nVT) (4.9)

where I,,1n2 is DC/AC/transient current flowing from node nl
to n2, V(nl) and V(n2) are DC/AC/transient voltages at nl and n2.
For convergence purpose, a resistor with the resistance of 1/G,,;p, is
connected in parallel with the diode.

Diode characteristics are temperature dependent. Temperature
dependence if IS, BV, and RS is modeled using the following equations.

IS(T)zlS-eXp((L 1) EG>.(T YXTI/N

TNOM ’'N-¢7) ‘'TNOM
(4.10)
BV(T) =BV +TBV1-(T —TNOM)+TBV1-(T — TNOM)?
(4.11)
RS(T) = RS+ TRS1-(T —TNOM) +TRS1- (T —TNOM)?
(4.12)
(4.13)

Temperature of the diode can be set by the parameter TEMP. If this
parameter is not explicitly set, temperature dependence is disabled.

4.2 BJT component

A new line starting with the letter Q defines a [Bipolar Junction|
[Transistor (BJT)| The first string is the component name and the next
three strings are names of the nodes connected to the collector, base,
and emitter of the [BJT] The next string is the name of the BJT] model.
The next number is the [BIT] area factor.

4.2. BJT COMPONENT 29

NE

Figure 4.2: Equivalent circuit of the BJT component

For example, a [BJT] of area scaling factor a is instantiated with
collector NC|, base N B, and emitter NE in the following lines. Note,
that the model ‘2N2222’ of an npn [BJT| with various hyper-parameters
is also written.

.model 2N2222 NPN (ISE=1E-14 ISC=1E-14 BF=100 BR=3)
Q1 NC NB NE 2N2222 a

Resistors RC, RB, and RE are added in series with each of the
collector, base, and emitter, respectively. Junction capacitors CJC
and CJE are added in parallel to the ‘ideal’ diodes present at base-
collector and base-emitter junctions, respectively. Together with them,
equivalent circuit of the BJT is shown in Fig. [£.2]

30 CHAPTER 4. NONLINEAR COMPONENTS

Parameters accepted by the {BJTI] component are listed in Table[1.2]
together with their meaning, default value, and the unit.

The ideal [BJT]in Fig. is modeled by the Ebers-Mol equations
given below.

V(NB) — V(NE)

Inp'sNE =area- IS - (exp() — 1) —ar - Inpsne

nrVr
(4.14a)
V(NB)—-V(NC
INB/_)NC/:area-IS-<eXp(() ())—1 —ar-INBSNE
nrVr
(4.14b)

Note, that the above equations are valid for ‘NPN’ [BJT] For a
PNP [BJT] the following equations are solved.

V(NE) - V(NB)

Ve)—1) —ar-Inc—nB

(4.15a)

INE’HNB' =area-1S - (exp(

V(NC) -V (NB)
nrVr

) — 1) —oaf - InpoNB

(4.15b)

Inc'—Nnp = area- IS - (exp(

Ideal diodes in Fig. represent leakage current at B-C and B-E
junctions. This leakage current does not take part in BJT action.
Currents through these diodes are modeled by the following equations.

Vbe = V(NB') — V(NE') (4.16)
Vbe

Ije = area- ISE - (exp() — 1) + Gin - (Vbe) (4.17)
neVr

Vbe = V(NB') — V(NC') (4.18)

Iy = area - ISC - (exp(Vbe) — 1) + Gumin - (Vbe) (4.19)
neVr

Note, that the above equations are valid for ‘NPN’ [BJT| Polarities
of the diodes are reverse in a ‘PNP’ [BIT]

4.2. BJT COMPONENT 31
Table 4.2: Input parameters of the [BJT] component
Parameter Description Default | Unit
IS transport saturation current 107 | A/m?
ISE B-E leakage saturation current 0 A/m?
IsC B-C leakage saturation current 0 A/m?
BF ideal forward beta 100 A
BR ideal reverse beta 100 A
NF forward emission coefficient 1 A
NR reverse emission coefficient 1 A
RE emitter series resistance 0 Q
RC collector series resistance 0 Q
RB base series resistance 0 Q
NE B-E leakage emission coefficient 1.5 -
NC B-C leakage emission coefficient 1.5 -
VJE B-E junction potential 0.8 v
vJC B-C junction potential 0.8 Vv
CJE B-E zero-bias depletion capacitance 0 F/m?
cJe B-C zero-bias depletion capacitance 0 F/m?
TF forward transit time 0 sec
TR reverse transit time 0 sec
MJE B-E junction grading coeff. 0.5 -
MJC B-C junction grading coeff. 0.5 -
FC coefficient in forward-bias depletion capacitance 0.5 -
EG band-gap of the diode material 1.1 eV
TEMP junction temperature 300. K
XTI ISE and ISC temperature exponent 3.0 -
XTB BF and BR temperature exponent 0 -
TRE1 RE temperature coefficient (linear) 0 1/K
TRE2 RE temperature coefficient (quadratic) 0 1/K?
TRB1 RB temperature coefficient (linear) 0 1/K
TRB2 RB temperature coefficient (quadratic) 0 1/K?
TRC1 RE temperature coefficient (linear) 0 1/K
TRC2 RE temperature coefficient (quadratic) 0 1/K?

32 CHAPTER 4. NONLINEAR COMPONENTS

The semiconductor junction capacitances Cj. and Cj. are modeled
as follows.

Cie = area - (Cde + Cje’) (4.20)
Cje' = CJE - (1 - &) o (4.21)
Cde =TF - 771512 - exp WZ‘iT) (4.22)

Cjc = area - (Cdc + Cjc’) (4.23)
Cjc = CJC - (1 - X}‘é) e (4.24)
cde—1F- B¢ op(YL (4.25)

ncVr P ncVr

Temperature dependence of various [BJT| parameters has been
modeled using the following equations. These equations are used when
the [BJT] temperature is set by setting TEMP parameter.

IS(T)=1S"-exp ((TN%M_UN??;T> - T)XTI

TNOM
(4.26)
B _ T EG . T xri/NE
ISE(T) = ISE eXp<(TNOM 1)NE~¢T) (Fxonr
(4.27)
B T EG T xri/NC
I50(1) = IS¢ eXp((TNOM 1)Nc-¢T> (Txnoar
(4.28)
BF(T) = BF- [—L o
(T) = BF- TNOM
(4.29)
BR(T)= BR - —L o
(T) = BR- TNOM

(4.30)

4.3. JFET COMPONENT 33

RE(T) = RE+TRFE1-(T —TNOM) + TRE2- (T — TNOM)?

(4.31)
RB(T) = RB+TRB1-(T —TNOM) +TRB2- (T — TNOM)?
(4.32)
RC(T) = RC+TRC1-(T —TNOM) +TRC?2- (T —TNOM)?
(4.33)

4.3 JFET component

A new line starting with the letter J defines a [Junction Field Effect)
[Lransistor (JEET)l The first string is the component name and the
next four strings are names of the nodes connected to the drain, gate,
and source of the [JFET] The next string is the name of the JFET]
model. The next number is the [JEET] area factor.

For example, a [JFET] of area scaling factor area is instantiated
with drain ND, gate NG, and source NS in the following lines.
Note, that the model ‘njf_depl’ of an n-channel JFET]| with various
hyper-parameters is also written.

.model njf_depl NJF (KP=200u VT0=0.6 PHI=0.6 GAMMA=0)
J1 ND NG NS njf_depl

Resistors RD, and RS are added in series with each of the drain,
and source, respectively. Junction capacitors CGS and CGD are added
in parallel to the ‘ideal’ diodes present at gate-source and gate-drain
junctions, respectively. Together with them, equivalent circuit of the

[JFET]is shown in Fig. [£.3]
Parameters accepted by the {JEET] component are listed in Ta-
ble [4.4] together with their meaning, default value, and the unit.

Following equations model an ideal n-channel [JFET]

Vis = V(ND') — V(NS') (4.34)
V,, = V(NG') = V(NS') — VTO (4.35)
(4.37)

INpNg = Ti

34 CHAPTER 4. NONLINEAR COMPONENTS

ND’

NGe

NS’

NS

Figure 4.3: Equivalent circuit of the n-channel [JFET] component

4.3. JFET COMPONENT 35
Table 4.3: Input parameters of the [JEET] component
Parameter Description Default Unit

VTO threshold voltage —1.

BETA trans-conductance parameter 0 AJV2)
LAMBDA channel-length modulation 0 AJV2)
ALPHA G-D junction ionization coefficient 0 V-1

VK G-D junction ionization voltage 0 A%

ISAT leakage current in sub-threshold region 101 A

IS G-S, G-D diode saturation current 1 A/m?
RS source series resistance 0 Q
RD drain series resistance 0 Q
N G-S, G-D diode emission coefficient 1.5 -
PB G-S, G-D junction potential 0.8 V
CGD G-D zero-bias depletion capacitance 0 F/m?
CGS G-S zero-bias depletion capacitance 0 F/m?
TT transit time 0 sec
MJ G-D, G-S junction grading coeff. 0.5 -
FC coefficient in forward-bias depletion capacitance 0.5 -
TEMP temperature 300 K
XTI IS diode temperature exponent 3. -
BETATCE trans-conductance temperature coeff. 0 1/K
VTOTC threshold voltage temperature coeff. 0 1/K
TR1 RD and RS linear temperature coeff 0 1/K
TR2 RD and RS quadratic temperature coeff 0 1/K?

36 CHAPTER 4. NONLINEAR COMPONENTS

IS~eXp(“//‘;f) itV,, <0
Id={ BETA Vs (Voo — $Vas) if Voo > Vs
%BETA . VOQ,U . (1 +)\<Vds - ‘/O’U)) if‘/ov < Vds
(4.38)
[[1d-ALPHA - (Va, = Vi) - exp (~vr) 10 < Vi < Vs
i — o= Vou
0 otherwise
(4.39)
(4.40)

Additionally, ideal diodes in Fig. represent leakage current at
Gate-Drain and Gate-Source junctions. Currents through these diodes
are modeled by the following equations.

Vgs=V(NG') - V(NS") (4.41)

I, =area- 1S - (exp (@) — 1) + Gin - (Vgs) (4.42)
nVr

Vgd = V(NG') — V(ND') (4.43)

I,q =area-IS - <exp (V—gd) - 1) + Goin - (Vgd) (4.44)
nVr

Note, that the above equations are valid for n-channel JFET]
Polarities of the diodes are reverse in a p-channel [JFET]

The semiconductor junction capacitances Cyq and Cgs are modeled
as follows.

Cgq = area - (Cgdl + Cgd2) (4.45)
Cgdl = CGD - (1 - XZ’) - (4.46)
Cgd2=TF - 77[% - exp (%) (4.47)

Cys = area - (Cgsl + Cgs2) (4.48)
Cygsl =CGS - (1 - ;jg) - (4.49)

4.4. MOSFET COMPONENT 37

Cgs2=TF - 15 exp(M
nVr

T) (4.50)

Temperature dependence of various [JEET] parameters has been
modeled using the following equations. These equations are used when
the JFET] temperature is set by setting TEMP parameter.

VTO(T) = VTO + VTOTC - (T — TNOM)

(4.51)

BETA(T) = BETA - 1.01PFTATCE(T=TNOM)
(4.52)

IS(T) = IS -exp ((TNTOM - DNEEJ ' (TNTOM)XTI
4.53)

RS(T) = RS+ TR1-(T —TNOM)+TR2- (T — TNOM)?
4.54)

(
)
(
RD(T) = RD+TR1-(T —TNOM) +TR2- (T — TNOM)?
(4.55)

In inverted mode, that is, Vg5 < 0, source and drain in the normal
mode are switched.

4.4 MOSFET component

A new line starting with the letter M defines a [Metal-Oxide Semi]
[conductor Field Effect Transistor (MOSFET)| The first string is the
component name and the next four strings are names of the nodes
connected to the drain, gate, source, and substrate of the MOSFET]
The next string is the name of the MOSFET| model. The next number
is the area factor.

For example, a[MOSFET]of area scaling factor a is instantiated with
drain ND, gate NG, source NS, and substrate N B in the following
lines. Note, that the model ‘nmos_depl’ of an n-channel MOSFET]
with various hyperparameters is also written.

.model nmos_depl NMOS (KP=200u VT0=0.6 PHI=0.6 GAMMA=0)

38 CHAPTER 4. NONLINEAR COMPONENTS

Ch

25

L
-

I

R,

NS

Figure 4.4: Equivalent circuit of the n-channel MOSFET]| component

Q1 ND NG NS NB nmos_depl

Resistors RG, RD, RS, and RB are added in series with each of the
gate, drain, source, and substrate, respectively. Junction capacitors
CBS and CBD are added in parallel to the ‘ideal’ diodes present at
substrate-source and substrate-drain junctions, respectively. Together
with them, equivalent circuit of the MOSFET]is shown in Fig. 1.4

Parameters accepted by the {IMOSFET] component are listed in
Table [£.4] together with their meaning, default value, and the unit.

Following equations model an ideal n-channel MOSFET]

Vis = V(NB') — V(NS (4.56)

4.4. MOSFET COMPONENT 39
Table 4.4: Input parameters of the MOSFET] component
Parameter Description Default Unit
L channel length 1. m
W channel width 1. m
AS Source diffusion area 0. m?
AD Drain diffusion area 0. m?
VTO zero-bias threshold voltage 1. V/K
KP trans-conductance coefficient 0 AJ/V?2/r
LAMBDA channel-length modulation 0 AJV2)
GAMMA bulk threshold parameter 0 A%
PHI surface potential 0.6 \%
ISAT sub-threshold leakage current 10~ A/m?
IS G-S, G-D diode saturation current 1 A/m?
RG gate series resistance 0 Q
RS source series resistance 0 Q
RD drain series resistance 0 Q
RDS S-D leakage resistance 10° Q
RB bulk series resistance 0 Q
RSH D, S diffusion series resistance 0 Q/m?
N B-S, B-D diode emission coefficient 1.5 -
PB B-S, B-D junction potential 0.8 A%
CBD B-D zero-bias depletion capacitance 0 F
CBS B-S zero-bias depletion capacitance 0 F
CJ bulk planar 0-bias depletion capacitance 0 F/m?
TT B-D, B-S diodes transit time 0 sec
MJ B-D, B-S junction grading coeff. 0.5 -
FC coefficient in forward-bias depletion capacitance 0.5 -
TEMP temperature 300 K
XTI IS diode temperature exponent 3.0 -
TCV threshold voltage temperature coeff. 0 1/K
BEX mobility temperature exponent. 0 1/K
TR1 RD and RS linear temperature coeff 0 1/K
TR2 RD and RS quadratic temperature coeff 0 1/K?
TRG RG linear temperature coeff 0 1/K
TRB RB linear temperature coeff 0 1/K

40 CHAPTER 4. NONLINEAR COMPONENTS

Vs = V(ND’) — V(NS’) (4.57)
V0 + v (V20 — Vs — V20) if Vis < 2.
Vin = . (4.58)
Vt0 otherwise.
Voo = V(NG') — V(NS') —Vin (4.59)
IS - exp (§22) ifV,, <0
INS—)ND =4 KP- % ' Vds ' (Vov - %Vds) ifVov > Vds
%K V021) (1 +)‘(VdS - Vov)) ifV;)v < Vds
(4.60)

Additionally, ideal diodes in Fig. [£.4] represent leakage current at
Substrate-Drain and Substrate-Source junctions. Currents through
these diodes are modeled by the following equations.

Vbs = V(NB') — V(NS') (4.61)
Vgs

I, =area- 1S - (exp (=) - 1) + Gumin - (Vbs) (4.62)
nVr

Vbd = V(NB') — V(ND') (4.63)

I,q =area-IS- <exp (Vvd) 1) + Gin - (Vbd) (4.64)
T

Note, that the above equations are valid for ‘n-channel’ MOSFET]
Polarities of the diodes are reverse in a ‘p-channel’ MOSFET]

Capacitances at substrate-drain and substrate-source junction Chg
and Cys are modeled as follows.

Cha = area - (Cbdl + Cbd2) (4.65)
CBD' = CBD + CJ - AD (4.66)
Vbd\ M7
Cbdl = CBD - (1 - PB) (4.67)
18 Vbd
Cbd2 =TT - — -exp(—— 4.68
5 en () (4.6

Chs = area - (Cgsl 4+ Cgs2) (4.69)

4.4. MOSFET COMPONENT 41

CBS'=CBS+CJ-AS (4.70)
Vbs\ M/
1=CBS - (1- — 4.71
Cbs CBS (PB) (4.71)
IS Vbs
Cbs2=TT - — -exp(—— 4.72
e () (172)

Capacitances between gate-drain and gate-source nodes are MOS
capacitances. They are calculated as follows.

Cy = CGSO - W (4.73)
Cya = CGSO - W (4.74)
Cyp = CGBO - L (4.75)

Source and drain series resistances are calculated as follows.

AD
AS

Temperature dependence of various [MOSFET] parameters has been
modeled using the following equations. These equations are used when
the MOSFET] temperature is set by setting TEMP parameter.

VTO(T) = VTO + TCV - (T — TNOM)

(4.78)
KP(T) = KP - (-)BEX
TNOM
(4.79)
_ T _ EG T XTI/N
IS(T) =15 - exp <(TNOM Uy ¢T) Tnonr
4.80)
RS(T) = RS +TR1-(T —TNOM) +TR2- (T — TNOM)?
4.81)

(
)
(
RD(T) = RD +TR1-(T —TNOM) +TR2- (T — TNOM)?
(

>

82)

42 CHAPTER 4. NONLINEAR COMPONENTS

RB(T) = RB+TRB - (T - TNOM)
(4.83)

RG(T) = RG + TRG - (T — TNOM)
(4.84)

In inverted mode, that is, Vs < 0, source and drain in the normal
mode are switched.

4.5 MESFET component

A new line starting with the letter Z defines a [Metal-Semiconductor]
[Field Effect Transistor (MESFET)| The first string is the component
name and the next four strings are names of the nodes connected to
the drain, gate, and source of the [MESFET| The next string is the
name of the MESFET] model. The next number is the MESEET] area
factor.

For example, a[MESFET] of area scaling factor area is instantiated
with drain N D, gate NG, and source NS in the following lines. Note,
that the model ‘mesfet_depl’ of an n-channel MESFET]| with various
hyper-parameters is also written.

.model mesfet_depl MESFET (KP=200u VT0=0.6 PHI=0.6 GAMMA=0)
Z1 ND NG NS mesfet_depl

Resistors RD, RG, and RS are added in series with each of the drain,
gate, and source, respectively. Junction capacitors CGS and CGD are
added in parallel to the ‘ideal’ diodes present at gate-source and
gate-drain junctions, respectively. Together with them, equivalent
circuit of the MESFET]is shown in Fig. [4.5]

Parameters accepted by the {MESFET] component are listed in
Table [4.5] together with their meaning, default value, and the unit.

Following equations model an ideal n-channel MESFET]

Vis = V(ND') = V(NS (4.85)
Vo =V(NG) = V(NS') = VTO (4.86)
Inpong = Id (4.87)

4.5. MESFET COMPONENT

ND’

NS’

NS

Figure 4.5: Equivalent circuit of the MESFET]| component

43

44

Table 4.5: Input parameters of the MESFET] component

Parameter

CHAPTER 4. NONLINEAR COMPONENTS

Description Default Uni

VTO threshold voltage —1.

BETA trans-conductance parameter 0 A/V?,
ALPHA saturation voltage parameter 2 AJV?E,
LAMBDA channel-length modulation 0 A/V?,

VBD G-D, G-S junction breakdown voltage 100 A%

ISAT leakage current in sub-threshold region 10714 A

IS G-S, G-D diode saturation current 1 A/m
RS source series resistance 0 Q
RG gate series resistance 0 Q
RD drain series resistance 0 Q
N G-S, G-D diode emission coefficient 1.5 -

B Gdoping tail extension parameter 2 -

PB G-S, G-D junction potential 0.8 \%

CDS D-S capacitance 0 F/m

CGD G-D zero-bias depletion capacitance 0 F/m

CGS G-S zero-bias depletion capacitance 0 F/m

TT transit time 0 sec
MJ G-D, G-S junction grading coeff. 0.5 -
FC coefficient in forward-bias depletion capacitance 0.5 -
TEMP temperature 300 K
XTI IS diode temperature exponent 3. -
BETATCE trans-conductance temperature coeft. 0 1/K
VTOTC threshold voltage temperature coeff. 0 1/K

TRD1 RD linear temperature coeff 0 1/K
TRG1 RG linear temperature coeff 0 1/K
TRS1 RS linear temperature coeff 0 1/K

4.5. MESFET COMPONENT 45

IS - exp (Y2) ifV,, < Oora <0
. 2 o . .
ld= lfBYi/vov ’ (1 +)\Vds) ’ (1 - (1 - %)3) if0 < Vds < 3/0(
1-5].3‘./(\)/1)01; ' (1 + /\Vds) ides > 3/a
(4.88)
(4.89)

Additionally, ideal diodes in Fig. represent leakage current at
Gate-Drain and Gate-Source junctions. Currents through these diodes
are modeled by the following equations.

Vgs =V(NG') — V(NS (4.90)

I,s=area-1S- (exp (@) - 1) + Gmin - (Vgs) (4.91)

nVr
Vgd = V(NG) - V(ND') (4.92)
Vod

I,qg=area-1S-|ex
e (p(UVT

) — 1> + Gin - (Vgd) (4.93)
Note, that the above equations are valid for n-channel MESFET]
Currently, the simulator supports only n-channel MESFET]

The semiconductor junction capacitances Cyq and Cgys are modeled
as follows.

Cea = area - (Cgdl + Cgd2) (4.94)
va\ M
1= D -(1-—— 4.
Cgdl =CG (PB) (4.95)
15 Vgd
Cgd2 =TT - —— - exp 4.96
’ 5 ep () (4.9
Cys = area - (Cgsl + Cgs2) (4.97)
Vd

I
Cgs2 =TT - 22 oxp (VI
nVr

-) (4.99)

46 CHAPTER 4. NONLINEAR COMPONENTS

Temperature dependence of various MESFET] parameters has been
modeled using the following equations. These equations are used when
the MESFET] temperature is set by setting TEMP parameter.

VTO(T) =VTO+VTOTC - (T —TNOM) (4.100)
BETA(T) = - 1.01BETATCE(T-TNOM) (4 101)

IS(T) = 1S - exp <(TNT0M - 1)NE,C(ZT> (o) X7 (4.102)

TNOM
RS(T) = RS + TRS1- (T — TNOM) (4.103)
RD(T) = RD + TRD1- (T — TNOM) (4.104)
RG(T) = RG+ TRG1- (T — TNOM) (4.105)

In inverted mode, that is, Vs < 0, source and drain in the normal
mode are switched.

Chapter 5

Subcircuits and
Parametric Equations

Blocks of circuit which are repeatedly used in the main circuit can be
defined as subcircuits and reused. Subcircuits can be parameterically
defined thereby increasing their re-usability. An example subcircuit is
defined below.

.model DalN4004 D (IS=18.8n RS=0)

.subckt Example N1 N2 N3 PARAMS: res1=2.0 res2=12.0
.PARAM res3={res2x%2}

.PARAM res4={res1x5}

Rk N1 N2 res3

R1 N3 N2 res4

Rm N3 N1 {2.0+I(Vprob)}

Vprob N3 N4 DC O

Di N4 N1 DalN4004 1E-1

.ends

X3 nl n2 n3 Example PARAMS: res1=9.0 res2=5.0

47

48 CHAPTER 5. SUBCIRCUITS

.end

In the above example, the subcircuit definition begins with the first
keyword .subckt which is followed by the subcircuit name Example.
The name is followed by the names of the input nodes of the subcircuit.
Subcircuits can optionally take parameters which are listed after the
keyword PARAMS: which is written after listing all the input nodes of
the subcircuit. Each parameters has a default value listed with it. For
example, resl is set to a default value of 2.0. The subcircuit ends
with first keyword .ends.

Any subcircuit can access ground node by using the name 0 reserved
for ground node. Any subcircuit can access any model defined outside
the subcircuit definition. A subcircuit may not be defined inside the
definition of another subcircuit. That is, all subcircuits must be defined
in the main circuit file.

A subcircuit is instantiated in the main circuit or in another
subcircuit by using the character X at the beginning of the subcircuit
name (here it is X3). It is followed by the node names from the main
circuit which are connected to the subciruit output nodes. The nodes
are followed by the subcircuit name (here it is Example). User-defined
values of subcircuit input parameters are supplied to this instance of
the subcircuit by writing PARAMS: followed by the input parameter
names and their values.

Internal parameters can be defined in a subcircuit by using .PARAM
at the beginning of the new line. This is followed by parname={<expr>}
without spaces. Here parname is a new parameter name and <expr>isa
mathematical expression enclosed in curly brackets. All the expressions
enclosed in {. ..} are evaluated by ‘exprtk’ expression parser.

Component ‘values’ can also be parameterized. In the above
example, resistance of Rk is equal to res3 which is defined as a
parameter. Resistance of Rm depends on a solution variable I(Vprob).

5.1. NODE VOLTAGES AND CURRENTS IN PARAMETER EXPRESSIONS49

5.1 Node Voltages and Currents in Param-
eter Expressions

Resistance of Rm is set to 2.0+I(Vprob), where I(Vprob) is current
through the voltage source Vprob. It can be accessed in the mathe-
matical expression using the expression I(Vprob). Similarly, potential
difference between two nodes in the subcircuit can be used in the
mathematical expression by V(N3,N2) where N3 and N2 are internal
names of the nodes in the subcircuit. Voltage at a single node N3 can
be specified in the expression by using V(N3,0).

After every AC/DC /transient solution, these solution variables are
updated. However, derivatives of the equations of the components
whose values depend on solution are not defined. Therefore, using such
expressions may lead to non-convergence.

5.1.1 External Subcircuit Library

A library file “*.1ib’ containing definitions of subcircuits can be imported
using .LIB command as follows.
.LIB filename.lib

Chapter 6

Thermal Circuit Solver

Heat is generated in the electronic components during operation. It is
conducted to the heat-sink via a number of layers consisting of metals
and packaging materials which have a finite heat conductivity and
heat capacity. Temperature difference between the component and
the heat-sink enables heat conduction. Temperature of the component
is determined by the rate of heat generation and conductance of the
intermediate layers. On the other hand, electrical characteristics of
the electronic component depends on its temperature.

Heat flow equation can be converted to an equivalent electric circuit
by drawing equivalency between temperature and voltage, electrical
current and heat, electrical capacitance and heat capacity (see Table
. Once an equivalent thermal circuit of the chip packaging is
obtained, it can be solved with the circuit solver together with the
electrical circuit to determine steady-state/transient voltages, currents,
and temperature in the circuit.

6.1 Thermal components

Since the same equations are solved in the analysis of both the
thermal and the electrical circuit, all the electrical components can be
used as thermal components. In reality, only the following electrical
components have thermal analogue.

o1

52 CHAPTER 6. THERMAL CIRCUIT

Table 6.1: Equivalence between various thermal and electrical
quantities in a thermal circuit

Thermal quantity ‘ Unit ‘ Equivalent electrical quantity Unit
Heat current Watt Current Ampere
Temperature difference Kelvin Potential difference Volts
Thermal resistance K/W Electrical resistance Ohm
Thermal capacity Joules/K Electrical capacitance Farad

o Resistor: Thermal resistance of the chip package of a specific
geometry.

« Capacitor: Heat capacity of the chip package of the specific size.

e Voltage source: A heat-sink which is always kept at a constant

temperature relative to TNOM can be modeled by a voltage source.

e Current source: A component generating heat at a constant rate
can be modeled by a current source.

6.1.1 Resistance

A thermal resistor is modeled in exactly the same way as described in
Subsec. m A resistor with resistance value ry, models temperature
between the two nodes specified by n1 and n2 using the following
relationship.

T(n2) —T(nl) = Py, - T (6.1)
Here, P;, is heat current flowing from nil to n2 through the
resistance per unit time.
6.1.2 Capacitor

A thermal capacitor is modeled in exactly the same way as described in
Subsec. 2.1.4] A capacitor with value Cy, models temperature between

the two nodes specified by n1 and n2 using the following relationship.

6.2. HEAT GENERATION IN ELECTRICAL COMPONENTS 53

d(T'(n2) — T(nl))
dt

Pu = Cy (6.2)

Here, Py, is heat current flowing n1 to n2 through the capacitor
per unit time.

6.1.3 Voltage source

A heat-source/sink is modeled in exactly the same way as described in
Subsec. A heat-source/sink with value AT = Theat—sink — Tnom
creates a fixed temperature difference of AT between the two nodes
specified by n1 and n2.

6.1.4 Current source

A heat-generator is modeled in exactly the same way as described
in Subsec. A heat-generator with value Py, creates a fixed
heat current flowing from nl to n2. Heat generation in electrical
components is modeled by adding a heat-generator corresponding to
each of the components. This is described in the next section.

6.2 Heat generation in electrical compo-
nents

In the circuit simulation, only the heat generation in the following
components is modeled.

o Resistor,
e Diode,
- BJT]

- JFET]

o IMOSEET]

54 CHAPTER 6. THERMAL CIRCUIT

Heat generated in the above listed components enters the thermal
circuit only when the appropriate node in the thermal circuit is specified
as THPORT argument while defining the above components.

Heat generated in the parasitic resistances/diodes in the spice
circuit of the electronic component (for ex. in m see Fig. 4.2)) is
added to the heat generated in the main component (e.g. J

Heat generated, if any, in all the other components is ignored. For
example, heat generated in a voltage/current source or a controlled
source is ignored.

6.3 Setting Component Temperature

During device operation, temperature of the component increases
till heat generation rate in the component equals the rate of heat
conduction away from the component. Increased temperature can
alter electrical characteristics of the component. The altered electrical
characteristics change heat generation rate.

While solving electro-thermal circuit, temperature at the thermal
node specified by THPORT is used to calculate temperature dependence
of electrical characteristics of the component. Heat generation rate is
calculated from the electrical characteristics.

The following criteria are used in setting a component temperature.

o If both TEMP and THPORT parameters are specified with the
component definition, then temperature at the node given by
THPORT node is set as component temperature.

o If the node specified by THPORT is not connected to the thermal
circuit, then it is assumed to be connected to thermal GND. That
is, component temperature is set to TNOM.

o If only TEMP is specified, then component temperature is fixed to
the value given by TEMP throughout the simulation.

e If neither of the TEMP and THPORT are specified, then the compo-
nent temperature is fixed at TNOM.

6.4. EXAMPLE CIRCUIT 95

6.4 Example circuit

An example circuit netlist in spice format containing both electrical
and thermal circuits is given below.

.DC Vs 0.0 50.0 0.1
.AC DEC 1 1. IM
.TRAN 0.0001 10. 0. 0.1 1E-12 1.1 1.1

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51
+ TRPZ=1 ITLINNER=10 TNOM=300

.model DalN4004 D(IS=18.8u RS=1E-2. BV=400 IBV=5.00u
+ CJ0=1.E-9 M=0.333 N=2 TT=1E-6 XTI=3.0)

k*x Electrical circuit **
Vs 1 0 DC 1. AC 1. 0 SIN(O0. 230. 1.)

Rm 1 5 10. THPORT=rmth TC1=10. TC2=1.
Di 5 6 DalN4004 1. TEMP=350. THPORT=dith
RL 5 6 100.

Rn 6 0 10.

%% Thermal circuit ****
Rth2 rmth dith 0.1
Rth dith 8 0.1

Vth 8 0 DC O.
.end

In the above file, both electrical and thermal circuits are specified
in the same circuit file, but are separate. They are linked to each
other only by the nodes specified by THPORT on the lines which define
the resistor Rm and the diode Di. Heat generated in Rm and Di flows
through the thermal circuit to the heat-source/sink Vth which is at
AT = 8deg C. That is, absolute temperature of heat-sink is,

Tyin = 8 + Thom = 8 + 300 = 308K (6.3)

56 CHAPTER 6. THERMAL CIRCUIT

Vs

§ rmth
\% Rth2

Di dlth
gmh
RL
— Vih
Rn Tnom

Figure 6.1: The example circuit containing thermal and electrical
components. Note, the circuit on the left is an electrical circuit
containing the diode, whereas the one on the right is a thermal circuit
which is linked to the electrical circuit.

Note, that although TEMP keyword is specified with the component
Di, it is disregarded. Temperature of Di is set by the following equation.

Tp: = AT(dith) + Taom (6.4)

where, AT(dith) is obtained by solving the circuit.

The example circuit netlist given above can be pictorially repre-
sented as shown in Fig. [6.1] The above circuit can be solved using the
following command.

>> CircuitSolver Dithckt.cir

6.4. EXAMPLE CIRCUIT

Heat generation rate in Rm (W)

(K)

w

T-T_nom
%]

o

Figure 6.2:
Temperature

0 10 20 30 40 50
i T P S I BRI B
0{ ;0.25 _

] i Z

] Fo2 w
54 E 'g

] [a

] Fo1s g
0] : s

] Foar ©

] L e
5 E &

] F0.05 =

] C]

] E T
0 Heat gen. rate in: Fo

B — Resistor Rm [

] —— Diode Di L
ST T 7T 1T rr 71 005

0 10 20 30 40 50

supply voltage (V)
(a) Heat generation rate

0 30 40 50

[P I R
. L.
| Temperature (T- T_nom): -
| —— Diode _
- — Resistor -
. n
. |]

L S e e L e
0 10 20 30 40 50

Supply voltage (V)

(b) Temperature

o7

(a) Heat generation in the diode and the resistor, (b)

of the two components.

58 CHAPTER 6. THERMAL CIRCUIT

Heat generated in the diode and the resistor during the DC analysis
is shown in Fig. Note, the different scales on the two Y axes.
Much larger heat is generated in the external resistor Rm compared
to the diode. The diode and the resistor temperature are plotted
in Fig. The diode temperature is high despite the low heat
generation in the diode. Due to the placement of the diode and the
resistor on the board (see Fig. , resistor heat flows through the
diode package resulting in higher heat current through the diode
package. This increases the diode temperature.

Chapter 7

Python Interface

The scripting language Python comes with various optimization, ma-
chine learning, and other libraries. These libraries can be used for
calibration of the equivalent circuit models of various components,
and also for optimization of the given system. The Circuit Solver
provides a python library to enable calling the solver from a python
file. This can enable the use of ‘python-specific’ libraries together with
the circuit solver for various calibration and optimization tasks.

The following tasks can be performed using the python interface.
o Loading a circuit netlist from a Spice circuit file *.cir

e Adding AC, DC, and Transient solve commands to the solver
before solving the circuit.

e Reading and editing a component parameter value.

» Reading voltages/currents at any specific node which are gener-
ating in any specific solve command.

At the moment, the solver does not enable editing circuit netlist

from the python interface. The netlist can only be edited in the spice
netlist file and reloaded to python script.

99

60 CHAPTER 7. PYTHON INTERFACE

7.1 Example python script

An example python script to show usage of various procedures is given
below.

import circuitsolver as cs
import numpy as np

p = cs.circuit (O

p-readSpiceCircuitFile ("CircuitTrial.cir")

print (p.setComponentParamVal (Component="X1 R3", Value=1E2))
print (p.getComponentParamVal (Component="X1 R2"))
p-printCircuitNetlist (O

p.clearAnalyses ()

dci

p.addDCAnalysis (source="Vinput", start=0., end=1.0, incr=0.1)

trl = p.addTransientAnalysis (tstep=0.0001, tstop=0.01,

tstart=0., dtmax=0.001, dtmin=1E-12, dtincr=1.3, dtdecr=2.
p.setNodeCurrentToSave (Node="Vout", Component="R1")
p-setNodeCurrentToSave (Node="X1 Vs", Component="R3")
p.solve ()
print (p.getVsourceld (VsourceAddr="Vinput"))

print (p.getVsourceTransCurrentNumpyArray (VsourceAddr="Vinput",
analysisId=dcl))

print (p.getNodeTransCurrentNumpyArray(Node="X1 Vs",
Component="R3", analysisId=dcl))

7.2. READ CIRCUIT FILE 61

print (p.getDCSolutionNumpyArray (analysisId=dcl))

The line p = cs.circuit () creates an instance of the ‘circuit’
object. The next line reads in an ascii file ‘CircuitTrial.cir’ which
contains netlist of the circuit spice format as given below.

.DC Vinput 0.0 1.01 0.1
.ACDEC 1 1. 1M
.TRAN 0.0001 0.01 0. 0.001 1E-12 1.3 2.

.subckt Rec2 Vin Vout
R1 Vin Vout 10.

R2 Vs O 10.

R3 Vs Vout 1M

.ends

.subckt Rect Vin Vout
R1 Vin Vout 10.

R2 Vs O 10.

R3 Vs Vout 1M

X1 Vin O Rec2

.ends

Vinput Vin O DC 0.0 AC 1.0 90
+ SIN(0.8V 0.025V 100.)
X1 Vin Voutl Rect

X2 Voutl Vout Rect

W5 Vin Vout O TempW

R1 Vout 0 1000.

.end

All the functions used in the above script file are listed below.

7.2 Read Circuit File

e circuitsolver.circuit : An instance of the circuit class is
created and returned. Note, that all the functions listed below
are called onto the instance of the circuit class.

62 CHAPTER 7. PYTHON INTERFACE

e readSpiceCircuitFile : Reads an ascii file containing circuit
netlist in spice format. Input: Spice circuit file *.cir Output:
Returns 1 if the file is successfully read. Throws exception,
otherwise.

e printCircuitNetlist : Lists all the components in the main cir-
cuit as well as sub-circuits, in the following format. R1 : <R> : <n1>, <n2>
In the above line, R1 is the component name, <R> is the resistance,
<n1>, <n2> are the Ids of the nets connecting the resistor. Note,
that the net Ids are different from the net names specified in the
* cir file. Input: None. Output: Prints all components.

e clearCircuit : Deletes all components of the circuit. It is
important to clear all components loaded to the current instance
of the circuit before loading the next components by using
‘readSpiceCircuitFile’. Input: None.

7.3 Edit Parameters

Following functions can be used to retrieve a specific parameter
value for any of the components given the parameter name and the
component address.

e getComponentParamVal : Returns value of the given parameter
of the specified component. Inputs:
— Component : Component address followed by its name.

— Param : Parameter name.
Output: Stored parameter value.

e setComponentParamVal : Sets value of the given parameter of
the specified component. Inputs:

— Component : Component address followed by component
name. For example, a component named X1 R3 corresponds
to a resistor named R3 in the subcircuit X1.

— Value : New parameter value.

— Param : Parameter name.

7.4. ADD ANALYSES 63

Output: Returns ‘true’ if the parameter value is set.

e setParameterValues : Input a python map which stores circuit
numeric parameter name and corresponding values. The numeric
parameters of the circuit solver are set to the specified values.

e setFunctionalModel : Links a python object of the user de-
fined functionalmodel class to the specified generic component
(whose name starts with W). More information about the func-
tional models and their usage is provided in Chapter [§

7.4 Add Analyses

Note, that the analyses are added in the same order as the following
commands are called in the python script file.

e addDCAnalysis : Adds DC analysis to the existing list of analy-
ses, when the following inputs are provided. Inputs:

source : Name of the voltage source.

start : Voltage bias of the source at the beginning.
end : Voltage bias at the end.

incr: Increment in steps.

source2 : Name of the second voltage source in the DC
analysis of two sources on the 2D grid.

start2 : Voltage bias at the beginning.
end2 : Voltage bias at the end.

incr2: Increment in steps.

Output: Returns an integer which is the ‘analysis id. This
analysis id is required when retrieving the solution.

e addACAnalysis : Adds AC analysis to the existing list of analy-
ses, when the following inputs are provided. Inputs:

LineSpacing : ‘LIN’ for linear spacing of points, ‘DEC’ for
points spacing per decade, ‘OCT’ per octave.

64

CHAPTER 7. PYTHON INTERFACE

— points : Number of points per decade/octave.
— start : Start frequency for the frequency sweep.
— end : End frequency for the frequency sweep.

Output: Returns an integer which is the ‘analysis id’. This
analysis id is required when retrieving the solution.

addTransientAnalysis Adds transient analysis to the existing
list of analyses, when the following inputs are provided. Inputs:
— tstop : End time of the transient simulation.
— tstep : Time step at the beginning of the analysis.
— tstart : Start time of the transient simulation.

— dtmax : Maximum allowed time step. Time step is capped
at this value.

— dtmin : Minimum allowed time step. If time step goes
below this value, simulations are stopped.

— dtincr : If the simulation at current step is successful, then
time step is incremented by this factor.

— dtdecr : If the simulation at current step is unsuccessful,
then time step is decremented by this factor.

Output: Returns an integer which is the ‘analysis id. This
analysis id is required when retrieving the solution.

clearAnalyses : Deletes all the analyses stored in the circuit
object.

7.5 Read Solution Data

Following functions return various solutions of the circuit analyses or
node quantities.

e getGlobalNodeId : Returns global id of the node given the

address of the node and its name appended at the back. Voltage
at the node obtained by solving the circuit is stored in the
solution vector at the element id equal to the global id of the
node (when the vector element numbering begins with one).

READ SOLUTION DATA 65

getVsourceld : Returns voltage source id given a string with
the address of the voltage source and its name appended at the
back. Current flowing through this voltage source is stored in
the solution vector at the element id equal to the voltage source
id (when the vector element numbering begins with one).

get[DC | AC | Transient]SolutionNumpyArray : When the
analysis id is specified, this function returns a 2D numpy array of
the solution at each node at each bias point or frequency or time.
First column of the numpy array is the DC bias or frequency or
time. Next columns store the solution at each of the nodes.

getNode[DC | AC | Transient]VoltageNumpyArray : When
the node address and the analysis id is specified, it returns a
numpy array containing bias point or frequency or time depen-
dent voltage at the given node.

getVsource[DC | AC | Transient]CurrentNumpyArray: When
the woltage source address and the analysis id is specified, it
returns a numpy array containing bias point or frequency or time
dependent current flowing through the given node. Since currents
through voltage sources are calculated and stored while solving

the circuit, it is not necessary to explicitly use setNodeCurrentToSave
to store the currents.

getNode[DC | AC | Transient]CurrentNumpyArray : When
the node address, the component name, and the analysis id is
specified, it returns a numpy array containing bias point or fre-
quency or time dependent current entering the given component
at the given node. In the example python file, the node address
X1 Vs corresponds to a node named Vs in subcircuit X1. Among
all the components connected to Vs in X1, current entering the
resistor R3 at each step in the analysis id stored in the variable
dcl is returned as a numpy array.

Note, that in order to return current using this function, the
node current entering the device must be stored at bias points.
See setNodeCurrentToSave function on how to do it.

setNodeCurrentToSave : Specify the node address and the
component name before solving the circuit. Current entering

66

CHAPTER 7. PYTHON INTERFACE

the given component and at the given node is stored in the
solver to be retrieved later. In the example python file, the node
address X1 Vs corresponds to a node named Vs in subcircuit X1.
Among all the components connected to Vs in X1, current entering
the resistor R3 is stored at every bias-point, AC frequency, or
time-step. It can be retrieved at the end of the simulation by
using the function getNodeTransCurrentNumpyArray.

Note, that current entering a subcircuit pin (begins with X) or a
generic chip (begins with W) cannot be stored.

Chapter 8

Functional Modeling of
The Driver Chip

Modern power electronic circuits are often controlled by an IC chip
often called as the driver. This IC chip performs more than just sending
the driver signals for the given type of power device. Various other
logic functions involved in synchronizing with the input sinusoidal
signal, over-current protection, receiving temperature sensor, etc. are
also included in the driver chip. Such functionality of the driver chip
can be modeled by using functional model blocks.

8.1 Defining the functional model

To define a functional model, a python class which inherits the base
class "functionalmodel” is defined by the user. A member function
named "updateOutputPinVoltages” is defined in this newly defined
class. Functional model of the chip can be defined inside this member
function as described below. Once the class is defined, a new instance
of the class is created corresponding to each instance of the specific
driver chip present in the circuit. An example functional model is
defined in the python code snippet below.

import circuitsolver as cs

67

68 CHAPTER 8. FUNCTIONAL MODEL

import numpy as np
p = cs.circuit (O

class SimpleDriver (cs.functionalmodel):
def updateQutputPinVoltages (self, isOutputPin, inputV, time):
numPins = len(isOutputPin)
outV = []
for i in range(numPins):
if isOutputPin[i]:
if time > 1.0: # transient voltage ramp
outV.append (1.0)

else if time == -1: # DC voltage ramp
outV.append (1.0)
else:

outV.append (0.0)
return outV

drivl = SimpleDriver ()
p.readSpiceCircuitFile ("RCckt.cir")
p.setFunctionalModel ("W1", drivl)

p-solve ()

The above python script reads an example circuit from the file
‘RCckt.cir’, which is also shown below.

.TRAN 0.01 5. 0. 0.01 1E-12 1.3 1.3

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1

Wi 1 0 DriChp OUTPINS=(0)
Rm 1 out 1000
Cn out O 1E-3

.end

8.1. DEFINING THE FUNCTIONAL MODEL 69

The steps to be followed to use a functional model in the circuit
simulations are described below.

8.1.1 Defining the model class

A class named SimpleDriver inherited from cs.functionalmodel
class is defined in the above snippet. This functional model class
defines a driver chip of one output pin. The driver sets the voltage of
1V at the output pin at ¢ = 1sec.

Note, the structure of the class SimpleDriver. The class has a
function named updateOutputPinVoltages. This function takes the
following input arguments.

e self : Reference to the class object.

o isOutputPin : A list of boolean variables which has the length
equal to the number of output pins. Each variable is set true if
the corresponding pin is an output pin and false otherwise.

o inputV : A list of real numbers which has the length equal to
the number of output pins. Each variable specifies voltage at the
corresponding pin in the last DC or transient step.

e time : A real number which is set to the time at the current
time step in transient simulations. In DC bias ramp, time is set
to -1.

The above function updateOutputPinVoltages must return a list
of real numbers which has the length equal to the number of output
pins. Voltage at each of the output pins must be listed in the same
order as they are present in inputV.

8.1.2 Creating the driver instance

In order to use the functional model of the driver, an instance of the
class SimpleDriver is created in the python script as follows.

drivl = SimpleDriver ()

Note, that a new instance must be created for every driver chip of
the same type present in the circuit.

70 CHAPTER 8. FUNCTIONAL MODEL

8.1.3 Creating the driver in the netlist file

A driver chip is instantiated inside the netlist file ‘RCckt.cir’ using a
line which begins with the letter W as follows.

Wi 1 0 DriChp OUTPINS=(1)

In the above line, the first word specifies the driver instance name
(here W1).The output pins of the chip are listed as comma-separated
list in the brackets after the argument OUTPINS=. The second-last
word corresponds to the generic name of the driver chip (here DriChp).

In this case, the chip has only two pins. The first pin is connected to
the net ‘1’ in the netlist while the second pin is connected to the ground
(‘0’). Out of the two pins, only first pin is output pin. Therefore,
OUTPINS=(1) is set at the end of the line.

8.1.4 Linking the functional model to the driver

Every instance of the driver chip in the circuit netlist must be asso-
ciated with an instance of user-defined functional model. To link an
instance of the functional model to the driver chip, a python procedure
setFunctionalModel must be called on the circuit instance as follows.

p-setFunctionalModel ("W1", drivl)

The above procedure associates the driver chip in the circuit file
named W1 with the functional model class instance drivi. In this
way, at every time step during transient/DC simulation, the procedure
updateOutputPinVoltages is called. Voltages at the output pins are
read from the python list returned by the procedure and the voltage
sources connected to the output pins are set.

When performing an AC frequency sweep, the output pins are
connected to the AC voltage sources with zero AC bias.

Once the above steps are listed in the python script file, the solve
procedure can be called on the circuit instance to solve the circuit.

8.2. PYTHON MODEL LIBRARY FILE 71

8.2 Python model library file

A python file containing the functional model can be imported to the
circuit file (*.cir) using the line below.

.pylib filename.py

Here filename is the name of the file in which the functional
model class is defined. The circuitsolver reads the circuit file, imports
all the functional python models, and links them to the appropriate
components.

Chapter 9

Behavioural Model
Interface

Modern nonlinear electronic devices such as memoristor, etc. some-
times cannot be modeled using the existing compact models (of diodes,
BJTs, etc.). Behavioural model interface of the circuitsolver enables
the users to develop codes of their own behavioural models of these
devices and perform circuit simulations by deploying these compact
models.

To facilitate quick model development and deployment, ‘python
language is used to create the compact models.

9y

9.1 Defining the behavioural model

To define a behavioural model, a python class which inherits the base
class "behaviouralmodel” must be defined by the user. Various member
functions need to be defined by the user in this class. Their functions
are described below.

9.1.1 Behavioural model class definition

A python class named ‘MyDiode’ inheriting the base class ‘behaviouralmodel’
can be defined as follows.

73

74 CHAPTER 9. BEHAVIOURAL MODEL

class MyDiode (cs.behaviouralmodel)

Static member variables of the class i.e. the variables shared by all
the class instances, are defined after the above line. Following member
functions must be defined by the user.

Constructor

def __init__(self): is a constructor of the class. It is called when
a new class instance is created. Member variables which are limited
to the instance are defined in constructor.
Note, constructor of the base class ‘behavioural model’ must be
called in this constructor as follows — cs.behaviouralmodel.__init__(self).

isNonLinear

This function must return True if the device exhibits nonlinear be-
haviour.

useNumericDifferentiation

If this function returns True, then numeric differentiation is used
for calculating derivatives in the nonlinear solver. If True, central
difference scheme is used to calculate the derivatives numerically.
Numeric differentiation often leads to non-convergence of the nonlinear
solver.

setParameter

This function receives name and value as input arguments. It can be
used to set parameter values, when the parameter is specified in the
spice circuit file.

getPinCurrents

This function receives inputV and time as input arguments. inputV
is a python list of voltages at the device pins. Hence, its length is
equal to the number of pins. time is equal to the ramp time, if the
simulations are in transient ramp. Otherwise, it is equal to —1.

9.1. DEFINING THE BEHAVIOURAL MODEL 75

This function calculates pin currents from pin voltages of the device.
It returns the pin currents as a python list of numbers. Length of
the returned list must be equal to that of inputV. As a convention,
current entering the pin is positive.

This function is called when useNumericDifferentiation returns
True.

getDerivativesAndPinCurrents

This function receives inputV and time as input arguments. inputV
is a python list of voltages at the device pins. Hence, its length is
equal to the number of pins. time is equal to the ramp time, if the
simulations are in transient ramp. Otherwise, it is equal to —1.

This function calculates pin currents from pin voltages of the device.
It also calculates the derivative of the current of i*" pin with respect
to the voltage of j** pin for all pairs (4,7) : 4,5 € 1,..,n. Thus, we
have a n x n matrix of elements 4L|; ;. as follows.

dn - dly an

avy dVa avy

I dly dI;

dV; dV: dVy,
J=|"" "7 (9.1)

dl, dl, dly

A% dVa avy,
I=[LIs...,1,] (9.2)

The above matrix is flattened to create a python list. Pin currents
are appended to the list. Thus, for a n-pin device, the list length is
(n+ 1) - n, as shown below.

dhodn A dhy dn dl,d
_d‘/ladv2a"'7dvn7dvl7"'ad‘/vladv2a"'7dvn7 1 Qa"-a(n)
9.3

After computing the derivatives, the user must create a list composed
of the derivatives and the currents in exactly the above order and
return it.

This function is called when useNumericDifferentiation returns
False.

76 CHAPTER 9. BEHAVIOURAL MODEL

9.1.2 Use of auto-differentiation

Various auto-differentiation packages are available. They can be used
to calculate derivatives. The example below uses one such package
autograd to compute derivatives using autodifferentiation.

9.1.3 Example code

Behavioural model of a diode defined using the ‘behaviouralmodel’
interface is shown below.

import numpy as np

import autograd as ad

from autograd.variable import Variable
import circuitsolver as cs

import math

p = cs.circuit (O

class MyDiode (cs.behaviouralmodel):
name = "ABCD" # static member variable

def __init__(self):
cs.behaviouralmodel.__init__(self)
self.Is = 1E-6 # member variables
self.VT = 0.025
self.N = 2.0 # ideality factor

def isNonlinear (self):
return True;

def useNumericDifferentiation (self):
return False;

def setParameter (self, name, value):
if (name == "IS"):

self.Is = value

def getPinCurrents (self, inputV, time):

9.1. DEFINING THE BEHAVIOURAL MODEL 77

numPins = len(inputV)
if numPins != 2:
return [0] * numPins

vd
Id

inputV[0] - inputV[1]

self.Is * math.exp(Vd / self.VT / self.N)
+ 1E-12 * Vd

outI = [Id, -Id]

return outl;

def getDerivativesAndPinCurrents (self, inputV, time):
numPins = len(inputV)
if numPins != 2:
return [0] * numPins * (numPins + 1)

bigV = Variable (inputV)
va, vc = bigV[0], bigV[1]
Anode current
if inputV[0] - inputV[1] < 1:

TIa = self.Is * ad.exp((va - vc) / self.VT / self.N)

+ 1E-12 * (va - vc)

else:

Ta = self.Is * math.exp(1.0 / self.VT / self.N)

*x (va - vc)

cathode current

Ic = - Ia

computing gradients
Ta.compute_gradients()
Ic.compute_gradients()

outI = np.append(Ia.data, Ic.data)

outdI = np.append(Ia.gradient, Ic.gradient)
out = np.append (outdI, outI)

return out;

diol = MyDiode ()
p-readSpiceCircuitFile ("RCckt.cir")

78 CHAPTER 9. BEHAVIOURAL MODEL

p.setBehaviouralModel ("WBO", diol)
p-solve ()

The above python script reads an example circuit from the file
‘RCckt.cir’, which is also shown below.

.TRAN 0.01 5. 0. 0.01 1E-12 1.3 1.3
.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1

RO 2 3 1000

VO 3 0 DC 10

WBO 2 0 MyDiode IS=0.0001
.end

9.1.4 Linking the behavioural model to the driver

Every instance of the behavioural model class component in the circuit
netlist must be associated with an instance of user-defined model. To
link an instance of the behavioural model class to the component, a
python procedure setBehaviouralModel must be called on the circuit
instance as follows.

p-setBehaviouralModel ("W1", diol)

The above procedure associates the component in the circuit file
named WB1 with the behavioural model class instance diol. In
this way, at every time step during transient/DC simulation, the
procedure getDerivativesAndPinCurrents or getPinCurrents is
called. Currents (and derivatives, if applicable) at the pins are read
from the python list returned by the procedure.

Once the above steps are listed in the python script file, the solve
procedure can be called on the circuit instance to solve the circuit.

9.2 Python model library file

A python file containing the behavioural model can be imported to
the circuit file (*.cir) using the line below.

9.2. PYTHON MODEL LIBRARY FILE 79

.pylib filename.py

Here filename is the name of the file in which the behavioural
model class is defined. The circuitsolver reads the circuit file, imports
all the behavioural python models, and links them to the appropriate
components.

Chapter 10

Circuit Analyses

A main circuit is defined in a ‘*.cir’ file. Various analyses are also
specified in the circuit file by specific commands, typically at the
beginning of the file. The analyses supported by the solver are described
below.

10.1 DC analysis

A DC analysis is specified by the first word .DC which is followed by
the name of the voltage source to be ramped up in the DC analysis.
This is followed by three numbers, respectively, initial voltage, final
voltage, and increment value. For example, first line of the following
command sets a DC ramp of voltage source Vs from 0OV to 2V in the
steps of 0.1V.

.DC Vs 0.0 2.0 0.1
.DC Vin 0.0 1.0 0.1

When multiple DC ramp commands are specified, they are executed
sequentially. In the above example, after Vs is ramped to 2V, Vin is
ramped from 0V to 1V in the steps of 0.1V keeping Vs fixed at 2V.
If nonlinear components exist in the circuit, circuit solution (node
voltages and currents through the voltage source) at each bias point is
calculated using a nonlinear damped Newton’s solver proposed by Bank

81

82 CHAPTER 10. ANALYSES

and Rose. At each bias point, convergence is achieved when norm of
the residual is less than a predefined tolerance (€,ps). The tolerance can
be set by the option ABSTOL. Maximum number of Newton’s iterations
for the nonlinear solver are set by ITLDC and maximum inner iterations
in Bank-Rose solver are set by ITLINNER. If ITLINNER is set to zero,
then undamped Newton’s solver is called.

10.2 AC analysis

An AC analysis is added to the set of analyses by the first word .AC
and has one of the following format.

e .AC DEC NF FS FE
e .AC OCT NF FS FE

e .AC LIN NF FS FE

DEC means decade variation, and NF is the number of points per
decade. OCT specifies octave variation, and NF is the number of points
per octave. LIN stands for linear variation, and NP is the number of
points. FS is the starting frequency, and FE is the final frequency. For
example, the following commands set an AC analysis of the circuit
at frequencies from 1Hz to 1kHz with 10 frequency points per decade
followed by frequencies from 1kHz to 1IMHz with 10 frequency points
per decade.

.AC DEC 10 1. 1K
.AC DEC 10 1K 1M

Note, that DC bias at each voltage source can be set by specifying DC
ramp command before AC analysis. Each voltage source or current
source can act as an AC voltage or current source, if the AC component
is set to a non-zero value. If not, the voltage source acts as a short
and a current source acts as an open circuit.

10.3. TRANSIENT ANALYSIS 83

10.3 Transient analysis

A transient analysis is set by the first word . TRAN and has the following
format.

.TRAN TSt TE TS dTMax dTMin dTIn dTDe

In the above command, TSt is the initial time step, TE is end time, TS
is start time, dTMax is the maximum time step, dTMin is the minimum
time step. If the calculations at current time step converge, current
step is multiplied by an increment factor given by dTIn and time is
incremented. If the calculations don’t converge, current time step is
multiplied by decrement factor dTDe and new time-point is calculated
by adding the modified step to the previously converged time-point.
This convergence check is required only if nonlinear Newton’s solver is
used for calculations due to the presence of nonlinear components in
the circuit.

Note, that a DC analysis is performed before starting the transient
analysis. Also, only the voltage or current sources in which a transient
waveform is specified are varied in a transient analysis. All the other
sources are set constant at the DC bias value.

If nonlinear components exist in the circuit, circuit solution at each
time-step is calculated using the nonlinear damped Newton’s solver
(Bank-Rose solver). At each bias point, convergence is achieved when
norm of the residual is less than a predefined tolerance. The tolerance
can be set by ABSTOL. [Local Truncation Error (LTE)|is calculated at
each time-step as follows.

1 g T (t) — T (t — dt) 2
LTE(t) = N Xn: <(sn(t) — sp(t —dt)) - €trans + eabs) (10.1)

Here, r,(t) and r,(t — dt) are current and previous residuals at
the node n. s,(t) and s, (¢t — dt) are current and previous solutions
(node voltages) at node n. €,ps and €ians can be set by ABSTOL and
TRANTOL, respectively. Maximum number of Newton’s iterations for
the nonlinear solver are set by ITLTR.

84 CHAPTER 10. ANALYSES

10.3.1 Time-stepping

Two time-stepping methods, namely, [Backward-Euler (BE)[and trape-
zoidal interpolation, have been implemented. The following temporal
equation is solved in the transient circuit solver.

o5
— =C(s) ¥ 10.2
5. = C(®) (10.2)
where, C(s) is the circuit matrix and § is the solution at any given
time.
The above equation is discretized as follows.

8lts] — 8ti—a] _

o7 a-C(8lti]) - 8Tt:] + (1 — a) - C(8[ti-1]) - 5lti1]

(10.3)
Solution §[t;] is calculated from the known variables using the above
equation. Note, that in nonlinear circuits C'(5[¢;]) on [Right Hand Side]
is a nonlinear function of the solution at ¢;. This necessitates use
of a non-linear iterative method. When a = 1, the above time-stepping
method is called BE| method. In a trapezoidal method 0 < a < 1.
When TRPZ is set to zero, [BE| method is called, else trapezoidal
method is called. « can be set by the parameter ALPHA.

10.4 Solver settings

Solver settings can be modified in the circuit file by starting the line
with the word .0PTIONS and listing all the parameters after it. An
example is given below.

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8

A list of all the solver parameters which can be set using .0PTIONS is
given below.

e ITLDC : Maximum Newton iterations in non-linear DC solver.

e ITLTR : Maximum Newton iterations in non-linear transient
solver.

10.4.

SOLVER SETTINGS 85

ITUNDAMPED : Maximum inner iterations (>= 0) in undamped
Newton non-linear solver. In case of no convergence after un-
damped iterations, damped Newton iterations are performed.
(default value is 5).

ITLINNER : Maximum inner iterations (>= 1) in Newton non-
linear solver. First undamped iterations are performed, which
are followed by Bank-Rose damping. Default value is 10.

NEWTONST : Scaling factor of the update-step in undamped New-
ton non-linear solver (<= 1). Default value is 1.

ABSTOL : Absolute tolerance which is used as a stopping criterion
in nonlinear Newton solver.

TRANTOL : Tolerance multiplier in the calculation of [CTE]
RELTOL : Relative tolerance
GMIN : Minimum conductance.

TNOM : Nominal temperature at which the component parameters
are calibrated.

TEMP : Ficed operating temperature of the entire circuit.
VNTOL :

TRPZ : If zero, Backward Euler method is used for time-stepping,
else trapezoidal method is used.

ALPHA : In trapezoidal method, weight of the Jacobian of current
step is specified by this parameter.

TNOM : Default temperature of all the devices as well as tempera-
ture of the GROUND node in thermal simulations.

PARDISO : If greater than zero, Intel mkl libraries and Intel
Pardiso solver is used to solve linear matrix equation (A4 -x = b).
Else, SuperLU solver is used.

86

CHAPTER 10. ANALYSES

ILS : If greater than zero, an iterative linear solver (ILS) based
on GMRES method is used to solve linear matrix equation.
Incomplete LUT (ILUT) is used as a preconditioner.

ITILS : If ILS solver is being used, then this sets maximum
iterations performed in GMRES method.

ITREILS : If ILS solver is being used, then this specifies iterations
after which reset is performed.

TOLGMRES : If ILS solver is being used, then this specifies solver
tolerance in GMRES method.

TOLPRECOND : If ILS solver is being used, then this specifies
‘drop-tolerance’ of the ILUT method. If the matrix entry is less
than the tolerance value then it is ignored.

FILLPRECOND : If ILS solver is being used, the this specifies
fill-factor in the ILUT method.

Chapter 11

Circuit Netlist File
Format

The circuit solver parses a circuit netlist file ‘exampleSubckt.cir’ and
performs the listed analyses by using the following command.
>> CircuitSolver exampleSubckt.cir

11.1 Circuit File structure

A sample structure file which creates a 2D pn-diode is provided below.

.DC Vs 0.0 2.0 0.1
.AC DEC 10 1. 1M
.TRAN 0.001 5. 0. 0.1 1E-12 1.3 1.3

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8
+ ALPHA=0.51 TRPZ=1

.model DalN4004 D (IS=18.8n RS=0)
* Defining subcircuit Example_2

87

88 CHAPTER 11. NETLIST FILE FORMAT

.subckt Example_2 5 12 18 PARAMS: res1=2.0 res2=12.0
Rk 5 12 resl

R1 18 12 res2

Rm 18 5 {2.0+I(Vprob)}

Vprob 18 19 DC O

Di 19 5 DalN4004 1E-1

.ends

* Defining subcircuit Example_1

.subckt Example_1 5 12 18 PARAMS: resl1=2.0 res2=12.0
.PARAM res3={res2x2}

.PARAM res4={res3x5}

Rk 5 12 resl

Rl 18 12 res4

Rm 18 5 2.0

X3 5 12 18 Example_2 PARAMS: res1=9.0 res2=res2

.ends

* Defining main circuit
Vs 1 0 DC 1. AC 1. 0 SIN(OV 2.V 1.)

Ra 1 2 1.0

Rb 3 4 3.0

Rc 7 0 25.0

Rd 6 0 45.0

X1 2 7 3 Example_1 PARAMS: res1=5.0 res2=18.0
.end

The above circuit file uses many of the features described in the
previous chapters. Apart from these features, following additional
information may be useful for writing your own circuit file.

o Each line beginning with * is a comment line. It is not parsed
by the solver.

o A long text line can be split on the multiple lines by adding + at
the beginning of each of the next line.

e Each subcircuit must begin with a line .subckt and end with
ends

11.2. OUTPUT FILES 89

e .end specifies end of the circuit file. Any component after .end
is ignored.

o Fach line is split into a list of string by whitespace characters
(space or tab). Component names, node names, values, and
parameters must be separated by whitespace characters.

e A parameter and its expression must not have any whitespace
character between them.

e Text in curly brackets {...} is parsed by ‘exprtk’ parser.

11.2 QOutput files

The above circuit file performs AC, DC, and transient analyses as
mentioned at the beginning of the file. Each of the analyses stores
the results in a separate ‘csv’ file. These comma separated file can be
viewed using a text editor or a csv viewer program.

Chapter 12

Linear Circuit
simulation

Examples of circuits with various linear components are presented in
this chapter together with the circuit files. The simulation results can
be visualized using a plotting tool qtiplot.

12.1 R-C circuits

A RC circuit shown in Fig. is simulated using the spice file
below.

*.DC Vs 0.0 2.0 0.1
*,AC DEC 10 1. 1M
.TRAN 0.001 5. 0. 0.1 1E-12 1.3 1.3

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1

Vs 1 0 DC 1. AC 1. 0 PWL(0. 2. 1. 2. 2. 2.)
Rm 1 out 1000

Cn out O 1E-3

.end

91

92 CHAPTER 12. LINEAR CIRCUIT SIMULATION

Gain RC circuit

0.01

0.

3

0001 T
1.0e+00 1.0e+01 1.0e+02 1.0e+03 1.0e+04

Frequency (Hz)
(a) RC circuit (b) AC voltage
2
s
;71.5
ER
ko
205
n
¥]
0
0 1 2 3 4 5

Time (seconds)

(c) Transient voltage

Figure 12.1: RC circuit of time constant 1 sec in (a) is simulated to
calculate magnitude of voltage across the capacitor in (b) AC analysis
with C' = 1uF, and in (¢) Transient analysis with C' = 1mF.

12.2. L-R CIRCUITS 93

Note, that each of the analyses were ‘activated’ successively, such that
only one analysis is active at a time. Resulting voltage across the

capacitor (C' = 1uF) is plotted vs. frequency in Fig. [12.1(b)| for AC
analysis and is plotted vs. time in Fig.|12.1(c)| for transient analysis
(C = 1mF).

12.2 L-R circuits

A RC circuit shown in Fig. [12.2(a)| is simulated using the spice file
below.

*.DC Vs 0.0 2.0 0.1
* . AC DEC 10 1. 1M
.TRAN 0.001 5. 0. 0.1 1E-12 1.3 1.3

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1

Vs 1 0 DC 1. AC 1. 0 PWL(0. 2. 1. 2. 2. 2.)
Rm out 0 1E3
Ln 1 out 1E3

Note, that each of the analyses were ‘activated’ successively, such
that only one analysis is active at a time. Resulting voltage across

the resistor is plotted vs. frequency in Fig. [12.2(b)| for AC analysis

(L = 1H) and is plotted vs. time in Fig.[12.2(c)|for transient analysis
(L = 1kH).

12.3 R-L-C circuits

A RLC circuit shown in Fig.[12.3(a)|is simulated using the spice file
below.

*.DC Vs 0.0 2.0 0.1
*,AC DEC 10 1. 1M
.TRAN 0.0001 10. 0. 0.1 1E-12 1.3 1.3

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.75 TRPZ=1

94 CHAPTER 12. LINEAR CIRCUIT SIMULATION

— 17
2
& 001
8
°
20.0001
C
o
= @
‘a 1e-06
[
3
1e-08 - !
1.0e+00 1.0e+02 1.0e+04 1.0e+06
= Frequency (Hz)
(a) LR circuit (b) AC voltage
2
B
ol5
(=]
£
21
C
S
205
[
o«
0
0 1 2 3 4 5
Time (sec)

(c) Transient voltage

Figure 12.2: LR circuit of time constant 1 sec in (a) is simulated to
calculate magnitude of voltage across the capacitor in (b) AC analysis
with L = 1H, and in (c) Transient analysis with L = 1kH.

12.3. R-L-C CIRCUITS 95

E 1
[
o
8 001
]
>
$0.0001
~YMN .
w
[
= & 1e-06
1 100 10,000 1e+06
= Freqeuncy (Hz)
(a) RLC circuit (b) AC voltage
12
S 1
Y 08
]
—g' 0.6
z 04
o
,‘%’ 0.2
g o
-0.24
0 2 4 6 8 10

Time (seconds)

(c) Transient voltage

Figure 12.3: RLC circuit of time constant 1 sec in (a) is simulated to
calculate magnitude of voltage across the capacitor in (b) AC analysis
with L = 1H, C = 1uF, and in (c) Transient analysis with L = 1kH
and C' = 1mF.

96 CHAPTER 12. LINEAR CIRCUIT SIMULATION

Vs 1 0 DC 1. AC 1. 0 PWL(0. 2. 1. 2. 20. 2.)
Ln 1 2 1E3

Cm 2 out 1E-3

Rm out O 1E3

.end

Note, that each of the analyses were ‘activated’ successively, such
that only one analysis is active at a time. Resulting voltage across

the resistor is plotted vs. frequency in Fig. [12.3(b)| for AC analysis
(L =1H, C = 1uF) and is plotted vs. time in for transient
analysis (L = 1kH and C' = 1mF). Note, that ALPHA was changed to
0.75 to avoid spurious oscillations arising from Trapezoidal transients.

12.4 RC-networks

A circuit composed of a RC-network component is simulated using the
spice file below.

.TRAN 0.01 10. 0. 0.01 1E-12 1.1 1.1
*.AC DEC 10 1. 1M

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1 ITLINNI

.model RC1 RC (RPERL=1 CPERL=1 L=1 N=16)

Vs 1 0 DC 0. AC 1. 0 SIN(O0. 320. 1.)
R1 1 2 1

U1l 2 3 0 RC1

R2 3 0 1

.end

Each of the AC and transient analyses were ‘activated’ successively,
such that only one analysis is active at a time. Resulting voltages
at the input pin (2) and output pin (3) is plotted vs. frequency in
Fig. for AC analysis and are plotted vs. time in Fig.
for transient analysis. A comparison of the AC and transient response
for 16 and 20 lumped segments (N) confirms that for sufficiently large
N, choice of N does not alter the transfer characteristics of the RC
network.

12.4. RC-NETWORKS 97

RC network

1E-06
1E12

1E-18

1524 — AbS V(2)
1E-30 —— Abs V(3) N=20
1E-36 ADbs V(3) N=16
1E-42

Amplitude (V)

1E-54
1E-60
1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

Frequency (Hz)

(a) AC voltage

RC Network

150

—(2)
—V(3) N=16
0 12 V(3) N=20

Voltage (V)
=]

-100
-150

Time (sec)

(b) Transient voltage

Figure 12.4: A circuit consisting or a lumped RC network component
is simulated to calculate magnitude of voltage at the input and output
pins (2 and 3, respectively) in (b) AC analysis, and in (¢) Transient
analysis.

98 CHAPTER 12. LINEAR CIRCUIT SIMULATION

12.5 Lossless TL

A circuit composed of a lossless [TT] is simulated using the spice file
below.

.TRAN 0.01 10. 0. 0.01 1E-12 1.1 1.1
*.,AC DEC 10 1. 1M

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1 ITLINNI

.model TL2s TL (TD=1.5 Z0=1)

Vs 1 0 DC 0. AC 1. 0 SIN(O. 320. 1.)
R1 1 2 1

T1 2 0 3 0 TL2s

R2 3 0 1

.end

Each of the AC and transient analyses were ‘activated’ successively,
such that only one analysis is active at a time. Resulting voltages
at the input pin (2) and output pin (3) is plotted vs. frequency in

Fig. |12.5(a)| for AC analysis and is plotted vs. time in Fig.[12.5(b)| for

transient analysis. Note, that for AC analysis, delay of 1usec is used
whereas for transient analysis delay of 1.5 sec is used.

12.6 Lossy [TT]

A circuit composed of a lossy [TL] component is simulated using the
spice file below.

.TRAN 0.01 10. 0. 0.01 1E-12 1.1 1.1
*.AC DEC 10 1. 1M

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1 ITLINNI
.model TL2s TL (LEN=2 R=1 L=1 C=1)

Vs 1 0 DC 0. AC 1. 0 SIN(O. 320. 1.)

12.6. LOSSY[TIL 99

Lossless transmission line frequency response
16

14
1z

0.8 — V2

06 — V@3l

Magnitude of Potential

0.4
0.2

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06
Frequency (Hz)

(a) AC voltage

Transmission line
400

200
100
—V@)
—_—\(3)

Voltage (V)
=]

-100

-200

-400

Time (sec)

(b) Transient voltage

Figure 12.5: A circuit consisting of distributed lossless [TL] component
is simulated to calculate magnitude of voltage at the input and output
pins (2 and 3, respectively) in (b) AC analysis, and in (¢) Transient
analysis. Note, that for AC analysis, delay of 1usec is used whereas
for transient analysis delay of 1.5 sec is used.

100 CHAPTER 12. LINEAR CIRCUIT SIMULATION

Lossy TL transient response

e /(2]

Voltage (V)
S

Time (sec)

Figure 12.6: A circuit consisting of distributed lossless [TL] component
is simulated to calculate voltage at the input and output pins (2 and
3, respectively) in transient analysis.

R1 1 2 1

01 2 0 3 0 TL2s
R2 3 0 1

.end

Each of the AC and transient analyses were ‘activated’ successively,
such that only one analysis is active at a time. Resulting voltages at
the input pin (2) and output pin (3) is plotted vs. time in Fig. [12.5(b)|
for transient analysis. Note, that for AC analysis, delay of 1usec is
used whereas for transient analysis delay of 1.5 sec is used.

Chapter 13

Nonlinear Circuit
simulation

Examples of circuits with various nonlinear components such as diodes,
BJTs, and MOSFETs are presented in this chapter together with the
circuit files. The simulation results can be visualized using a plotting
tool qtiplot.

13.1 Full-bridge rectifier

A full-bridge rectifier circuit shown in Fig. is simulated using
the spice file below.

*.DC Vs 0.0 0.1 0.1

*.AC DEC 10 1. 1M

.TRAN 0.0001 10. 0. 0.01 1E-12 1.1 1.1

.OPTIONS ITLDC=100 ABSTOL=1E-8 TRANTOL=1E-8 ALPHA=0.51 TRPZ=1 ITLINNEI
.model DalN4004 D (IS=18.8 RS=0 BV=400 IBV=5.00u CJ0=30 M=0.333 N=2)

Vs 1 0 DC 0. AC 1. 0 SIN(O. 320. 1.)
R1 1 2 1E-1

101

102 CHAPTER 13. NONLINEAR CIRCUIT SIMULATION

s/ &)
T 3
— 4 ime " 6 8 10
(a) Full-Bridge-Circuit (b) Transient voltage

Figure 13.1: Full-bridge circuit in (a) is simulated to calculate voltage
across the load resistor when a sinusoidal transient with peak voltage
of 320V is applied.

R2 3 0 1E-1
RL 4 5 1E3

Di1l 4 2 DalN4004 1.0
Di2 4 3 DalN4004 1.0
Di3 2 5 DalN4004 1.0
Di4d 3 5 DalN4004 1.0
.end

Note, that each of the analyses were ‘activated’ successively, such that
only one analysis is active at a time. Resulting voltage across the load
resistor is plotted vs. time in Fig.[13.1(b)|in transient analysis.

13.2 BJT amplifier

A BJT amplifier circuit shown in Fig. [13.2(a)|is simulated using the
spice file below.

.DC Vsupply 0.0 12.001 0.2
.DC Vinput 0.0 0.601 0.1

13.2. BJT AMPLIFIER 103

7t 7
2 s
@bl 0.65<
3 5
: los
ER 2
= £ 0.553
c
03 =

- 0.5

0 1 2 3 4 5
= Time (seconds)
(a) BJT amplifier cir- (b) Output and input transients

cuit

Figure 13.2: BJT amplifier circuit in (a) is simulated to calculate
output voltage at the collector terminal of the BJT when the sinusoidal
input voltage of 50mV is applied. (b) The sinusoidal voltage at the
output is plotted vs. time on the left Y axis together with the input
voltage at the input (plotted on the right Y axis). Notice the range
on both the left and the right Y axes. Also, notice that the amplifier
introduces 180deg shift.

104 CHAPTER 13. NONLINEAR CIRCUIT SIMULATION

.TRAN 0.1m 10. 0. 0.005 1E-12 1.3 2.
.OPTIONS ITLDC=100 ABSTOL=1E-12 TRANTOL=1E-12 ALPHA=0.51 TRPZ=1
.model 2N2222 NPN (ISE=1E-10 ISC=1E-10 BF=200 BR=3)

.subckt bjtAmplifier Vc Vin Vout PARAMS: Rc=1K Rbc=22K Re=560 Rbe=6.!
R1 Vc Vout Rc

R2 Ve O Re

R3 Vb O Rbe

R4 Vc Vb Rbc

Rin Vin Vb 10

Q1 Vout Vb Ve 2N2222

.ends

Vsupply Vc 0 DC 2.0

Vinput Vin O DC 0.0 AC 1.0 O SIN(0.6 0.05 1.)

X1 Vc Vin Vout bjtAmplifier PARAMS: Rc=10K Rbc=100K Rbe=1K Re=270
.end

Note, that the DC analyses were used to bias the circuit after which
the transient analysis was performed. Resulting voltage at the collector
terminal of the BJT is plotted vs. time in Fig. [13.2(b)| in transient
analysis.

13.3 MOSFET amplifier

A MOSFET amplifier circuit shown in Fig. is simulated using
the spice file below.

.DC Vsupply 0.0 12.001 0.2
.DC Vinput 0.0 3. 0.1

.TRAN 0.1m 10. 0. 0.005 1E-12 1.3 2.
.OPTIONS ITLDC=100 ABSTOL=1E-12 TRANTOL=1E-12 ALPHA=0.51 TRPZ=1

.model nmos_depl NMOS (KP=200u VT0=0.6 PHI=0.6 GAMMA=0)

13.3. MOSFET AMPLIFIER 105

— Voutput
o~ Vinpuf 2 3 4 5

5

Output voltage (V)
»
(=)

Input voltage (V)

0 1 2 3 4
= Time (seconds)

(a) MOSFET ampli- (b) Output and input transients
fier circuit

Figure 13.3: MOSFET amplifier circuit in (a) is simulated to calculate
output voltage at the drain terminal of the MOSFET when the
sinusoidal input voltage of 50mV is applied. (b) The sinusoidal voltage
at the output is plotted vs. time on the left Y axis together with the
input voltage at the input (plotted on the right Y axis). Notice the
range on both the left and the right Y axes. Also, notice that the
amplifier introduces 180deg shift.

106 CHAPTER 13. NONLINEAR CIRCUIT SIMULATION

.subckt mosAmplifier Vd Vin Vout PARAMS: Rc=1K Rbc=22K Re=560 Rbe=6.!
R1 Vd Vout Rc

R2 Vs O Re

R3 Vg O Rbe

R4 Vd Vg Rbc

Rin Vin Vg 10

M1 Vout Vg Vs Vs nmos_depl

.ends

Vsupply Vc 0 DC 2.0

Vinput Vin O DC 0.0 AC 1.0 O SIN(3. 0.05 1.)

X1 Vc Vin Vout mosAmplifier PARAMS: Rc=10K Rbc=100K Rbe=1K Re=270
.end

Note, that the DC analyses were used to bias the circuit after which
the transient analysis was performed. Resulting voltage at the collector
terminal of the BJT is plotted vs. time in Fig. [13.3(b)|in transient
analysis.

Chapter 14
Circuit Optimization

Compact models of semiconductor devices should be able to reproduce
the experimental data under different biasing conditions. This is
achieved by fitting or calibration of the model parameters to the
experimental data. This is achieved by minimizing the difference
between the measure and simulated I-V data. The circuitsolver
provides built-in minimizer to perform calibration of the compact
model to the experimental data.

In order to get the highest performance or the lowest power loss,
electronic circuits containing nonlinear electronic devices as well as
linear components (R,L,C, etc.) are optimized by changing the device
scaling factor and values of the linear components. This can also be
achieved by the built-in minimizer.

Various procedures which can be used to perform the calibration
or optimization are described in this chapter.

14.1 Optimizer functions

14.1.1 Initialize

An optimizer object runs optimization algorithm on a predefined circuit
to get the optimum values of the component parameters subject to
a specified set of targets. Therefore, the optimizer object requires a

107

108 CHAPTER 14. OPTIMIZATION

circuit object for initialization. An optimizer object can be instantiated
as follows.

import circuitsolver as cs

p = cs.circuit()
p.readSpiceCircuitFile("RCckt.cir")
f = cs.optimizer(p)

resetOptimizationTargets

Deletes all the optimization targets defined by the user.

resetOptimizationParams

Delets all the fitting/optimization parameters defined by the user.

14.1.2 Setup optimizer

The following functions setup optimization settings, targets, and
parameters.

setOptimizationAlgorithm

f.setOptimizationAlgorithm(...) sets optimization algorithm as
well as other parameters such as termination criteria, etc. It takes the
following arguments.

1. Algorithm : An optimization algorithm is set. Omne of the
following algorithms can be set. —
o ‘Conjugate-Gradient’ : Conjugate gradient optimization
e ‘NM-Simplex’ : Nelder-Mead simplex based optimization

2. MaxIter : Maximum number of optimization iterations to be
performed.

3. GradientErrorTol : When norm of the gradient is lower than
this value, then optimization terminates.

4. RelativeErrorTol : When the norm of the vector of consecutive
values of parameters are less than this value, then optimization
terminates.

14.1. OPTIMIZER FUNCTIONS 109

addOptimizationParameter

f.addOptimizationParameter(...) adds a new circuit component
parameter to be optimized. It takes the following arguments.

1. Component sets the address of the component whose parameter
is to be optimized.

2. Param sets the parameter name to be optimized.
3. StartValue sets parameter value at the start of the optimization.
4. MinValue sets minimum allowed parameter value.

5. MaxValue sets maximum allowed parameter value.

addExperimentalDataAndExpression

f.addExperimentalDataAndExpression(...) adds a new optimiza-
tion target for the optimization procedure. The target value is
calculated for the specified analysis at the end of the circuit simulation.
All the target values are added to get the total value. If the file
containing the experimental data is provided, then the optimization
performs fitting of the parameter to the experimental data. Otherwise,
the target value is minimized. The function takes the following
arguments.

1. AnalysisType specifies one of the following analysis types — ‘DC’,
‘AC’, and ‘TRAN’.

2. AnalysisId specifies the analysis id. Note, it is returned when
a new analysis is added to the circuit.

3. FileName sets the csv file name in which the experimental data
is listed.

4. OptimExpression specifies the mathematical expression to be
evaluated at each data point, e.g. ”(V(0)-V(1))*V(2)".

5. Scaling sets the scaling factor to be multiplied to the target
before summing all the targets.

110 CHAPTER 14. OPTIMIZATION

6. IntegrationStart sets the start time/voltage/frequency of in-
tegration for target calculation.

7. IntegrationEnd sets the end time/voltage/frequency of integra-
tion.

8. MinValue sets minimum permissible value of the target, below
which penalty is added to the target.

9. MaxValue sets maximum permissible value of the target, above
which penalty is added to the target.

10. PenaltyFactor sets multiplication factor for penalty calculation.

addExperimentalDataAndNodeVoltages

f.addExperimentalDataAndNodeVoltages(...) adds a new optimiza-
tion target for the optimization procedure. This function takes same
arguments as the function Ref. 7?7, except OptimExpression. The
target is calculated from node voltages instead of a mathematical
expression. The node voltages are specified by the following arguments
in addition to the arguments listed in Ref. 77.

e VNodePlus specifies address of the node whose voltage is added
to the target.

e VNodeMinus specifies address of the node whose voltage is sub-
tracted from the target.

addExperimentalDataAndCurrent

f.addExperimentalDataAndCurrent(...) adds a new optimization
target for the optimization procedure. This function takes same
arguments as the function Ref. 7?7, except OptimExpression. The
target is calculated from a device current instead of a mathematical
expression. The device current specified by the following arguments
in addition to the arguments listed in Ref. 77.

e INode address of the node.

e ComponentName component connected to the node. Current
entering this component is added to the target.

14.1. OPTIMIZER FUNCTIONS 111

addExperimentalDataAndPower

f.addExperimentalDataAndPower (. ..) adds a new optimization tar-
get for the optimization procedure. This function takes same arguments
as the function Ref. 7?7, except OptimExpression. The target is
calculated from a device current and node voltages instead of a
mathematical expression. They specified by the following arguments
in addition to the arguments listed in Ref. 77.

Power to be added to the target is calculated as follows.

P=WV"T"-V7") Licomp (14.1)

e VNodePlus specifies address of the node whose voltage is added
(V*).

e VNodeMinus specifies address of the node whose voltage is sub-
tracted (V7).

e INode address of the node ‘n’ of I, comp-

e ComponentName component ‘comp’ connected to the node. Cur-
rent entering this component is added to the target.

14.1.3 Optimize
optimize

f.optimize () begins optimization procedure. Optimization of the
parameters registered till now is carried out. The targets added till
now are added together to form a single optimization target.

pause
f.pause () pauses the optimization procedure, if it is currently running.
If the optimization procedure is already paused, it does nothing.

resume

f.resume () resumes the optimization procedure, if it is paused before.
If the optimization procedure is running, it does nothing.

112 CHAPTER 14. OPTIMIZATION

stop

f.stop() stops running or paused optimization procedure.

getOptimizedValues

f.getOptimizedValues() returns parameter values at the end of the
optimization as a python list of numbers. Order of the parameter
values in the list is same as the order in which the parameters are
added.

14.2 Example Code

The following example python code describes optimization of a resistive
divider circuit to maximize power in the load resistor.

import circuitsolver as cs

define circuit

p = cs.circuit()

p.readSpiceCircuitFile ("CircuitTrial.cir")

define optimizer

= cs.optimizer (p)

f.setOptimizationAlgorithm(Algorithm = "NM-Simplex",
MaxIter=100,GradientErrorTol=1E-10,
RelativeErrorTol=1E-5)

f.addOptimizationParameter (Component="RO",
Param="Value", StartValue=10,
MinValue=1, MaxValue=200)

f.addExperimentalDataAndPower (AnalysisType="DC",
AnalysisId=0, FileName="", VNodePlus="2",
VNodeMinus="0", INode="2", ComponentName="RO",
Scaling=-1, IntegrationStart=0,
IntegrationEnd=10, MinValue=-10000,
MaxValue=10000, PenaltyFactor=10)

perform optimization

.optimize()

read output

H

H

14.2. EXAMPLE CODE 113

Vo
R1
RO

Figure 14.1: The resistive divider circuit defined in the file
‘CircuitTrial.cir’.

out = f.getOptimizedValues()

The above code reads a resistive divider circuit from the file
‘CircuitTrial.cir’ into the circuit object p. Contents of the file are
given below.

.DC VO 0 10 1
RO 2 0 10

R1 2 1 100

VO 1 0 DC 10 AC 10 1
.end

Circuit defined in the above file is shown in Fig. [[4.1] In the circuit,
resistance of R1 is fixed while that of RO is adjustable. The optimization
task is to maximize power dissipated in RO by adjusting the resistance
r (€ (1,200)). The example code solves this task as follows.

The line p.readSpice. .. reads the circuit file and creates the
circuit shown in Fig. A DC analysis with analysis-id ‘0’ is also
defined in the file.

The line cs.optimizer(p) creates a new optimizer object which
would optimize the circuit object p.

The next line f . setOptimizationAlgorithm(. ..) specifies ‘Nelder-
Mead simplex’ algorithm as an optimization algorithm and also sets
various other optimization parameters described before.

114 CHAPTER 14. OPTIMIZATION

The line f.addOptimizationParameter(...) adds the resistance
of RO as an optimization parameter. Note that resistance is set by the
parameter Value. Thus, at least one optimization parameter is added.

The line f.addExperimentalDataAndPower(...) adds the opti-
mization target. It specifies, that power dissipated in the resistor
((V(2) — V(0)) % I ro) is the optimization target. The target is
calculated by integrating power in the ramp from IntegrationStart
to IntegrationEnd in the DC analysis with id 0. Note, that the
optimization algorithm minimizes the target. However, the scaling
factor -1 causes ‘maximization’ of the power dissipated in resistor RO.

The line f.optimize () performs optimization, and £ .getOptimizedValues ()
returns the optimized values of all the parameters as a python list.

Chapter 15

Circuit Drawing
Application

Circuit drawing, simulations, and curve plotting can also be done with
a graphical-user-interface (gui) of the circuit solver. The gui can be
opened using the following line -

circuitdraw &

The above command opens a gui window which consists of a
‘Menu-bar’, a ‘Tool-bar’, a circuit drawing board, and a side-pane. The
‘Menu-bar’ contains various functions as drop-down menus, while the
‘Tool-bar’ contains some of the more common functions as short-cut
buttons. The ‘side-pane’ contains a stack of different widgets. Each of
the widgets contains an information on the circuit, such as analyses,
parameters, etc. or it assists the user in curve-plotting or optimization.
The components added to the circuit appear on the circuit drawing
board. The components can be connected to each other by drawing a
‘wire’ joining them. The circuitdraw tool saves the current state of
the circuit into a file with extension ‘*.cktdr’ This file can be opened
later in the circuitdraw tool to load the state of the circuit.

Various functionalities available as a single-click buttons on the gui
window are described in Fig. Each of the above functions has
been described in detail below.

115

CIRCUIT DRAWING

CHAPTER 15.

116

enubar

No message

Tool-bar

Run

analysis

Select

Export
circuit
netlist

Circuit

as

QBESQ/

board

Status-bar

/

Figure 15.1:

(Capagitor Jiee ve
v, |

Probe _ o ®
Vv, |

N DC .AC »
LA
DC, AC, TRAN
Copy Rotate Analyses

left/right Functions and Parameters

Components

side-
panes I/
I

Plot Properties

Fitting / Optimization

Device params To fit: Add Delete | Objec
Comp Param Min M Nam¢
1 L3 1
Optimization: Optimization Method: | BFC
Start End Maximum Iterations |0
Pause/Resume Terminate: Error <

Accept Fitted Params | Gradient norm <

Progress-bar
9 S 0%

Graphical-user-interface of the circuit drawing tool.

15.1.

FILE-MENU

|!! Edit Add Linear Add Nonlinear Ad

fn New Ctrl+N

5 Open File Ctrl+0

Save File Ctrl+s
Save File As

Import Library

Import Python Models
3] Export Netlist

Export Subcircuit

Save As Svg

f® Close

]

de

Figure 15.2: File menu.

15.1 File-menu

117

‘File’ menu on the menu-bar shows the following ‘items’ on click (see

Fig. .

15.1.1 New

When clicked, it opens a new circuitdraw window keeping the current
circuit unmodified. If the current circuit window is empty, then it does

nothing.

15.1.2 Open File

When clicked, it opens a dialog box to select the ‘*.cktdr’ file to be
opened. The selected “*.cktdr’ file is opened in a new circuitdraw
window. If the current window is empty, then the circuit file is loaded
to the current window instead.

118 CHAPTER 15. CIRCUIT DRAWING

15.1.3 Save File
When clicked, it opens a dialog box to input file-name and location
of the “*.cktdr’ to be saved. Following information is stored in the
“* cktdr’ file with the given name and at the given location.

e Circuit drawing and connectivity

e Modified component parameters

o Analyses

o User-defined functions and parameters

o User-defined I/V probes

o User-defined optimization parameters, targets, and settings,

e Loaded library files.

15.1.4 Save File As

When clicked, it opens a dialog box to input file-name and location of
the “*.cktdr’ to be saved. Current state of the circuitdraw is stored.

15.1.5 Import Library

When clicked, it opens a dialog box to select the spice library (“*.1ib’
file) to be loaded. The loaded file is read and all the models/subcircuits
are loaded to the current window.

15.1.6 Import Python Models

When clicked, it opens a dialog box to select the python file containing
functional or behavioural models (‘“*.py’ file). The loaded file is read
and all the valid python functional and behavioural models are loaded
to the current window.

15.2. EDIT-MENU 119

15.1.7 Export Netlist

When clicked, it opens a dialog box to input file-name and location of
the spice “*.cir’ file. Spice netlist of the circuit, including the imported
spice libraries, analyses, and user-defined functions/parameters are
stored in the file. This file can be used to run spice simulations using
the circuitsolver.

15.1.8 Export Subcircuit

When clicked, it opens a dialog box to input file-name and location of
the spice ‘*.1ib’ file. Spice netlist of the circuit, including user-defined
functions/parameters are stored in the file as a sub-circuit. Pins defined
in the circuit are set as the output pins of the stored sub-circuit.

15.1.9 Save As Svg

When clicked, it opens a dialog box to input file-name and location
of the svg file ‘“*.svg’ The circuit diagram is stored in SVG format in
this file.

15.2 Edit-menu

‘Edit’ menu on the menu-bar shows the following ‘items’ on click (see
Fig. [15.3)).

Various actions can be ‘toggled’. This means, if the given action is
active, clicking on the action will deactivate it. If the given action is
inactive, clicking on the action will activate it.

Various actions can be ‘toggled’. That is, if the action is active,

15.2.1 Select

When clicked, ‘select’ action is toggled. When ‘Select’ is active, Draw

any arbitrary rectangle in the circuit drawing window by —> drag |—| release
left mouse button. All the components and the wires in the rectangle
are selected.
Alternately, individual components can be selected by clicking on
them while ‘Select’ action is active.

120 CHAPTER 15. CIRCUIT DRAWING

I!H! Add Linear Add Nonlinear Add Analy

|I i} Select q
~| [Move Component Ctrl+M
[y Copy Component Ctrl+C B
W Delete Del
© Rotate Right Ctrl+R
£ Rotate Left Ctri+L

Ak Flip left-right
& Flip up-down
@ Drag Screen
@& Zoom Ctrl+Q
24 Zoom To Fit
it Edit Parameters
Delayed Set Params

Figure 15.3: Edit menu.

The selected components and wires are painted in red.

15.2.2 Move Component

When clicked, ‘Move Component’ action is toggled. When ‘Move
Component’ is active, left mouse button on the component
to be moved, the cursor to the desired location, and
it. The component will be moved to the new location. Note, that

the wires connected to the component will not be moved. Hence, this
operation changes connectivity.

If one or more components have been previously selected by ,
then they are moved by the above action.

15.2.3 Copy Component

When clicked, ‘Copy Component’ action is toggled. When ‘Copy
Component’ is active, left mouse button On the component to

be copied, the cursor to the desired location, and it. A

15.2. EDIT-MENU 121

new component same as the clicked one will be created and moved to
the new location. Note, that the wires connected to the component
will not be copied/moved.

If one or more components have been previously selected by ,
then they are copied by the above action.

15.2.4 Delete

When clicked, ‘Delete’ action is toggled. When ‘Delete’ is active, left
mouse click on any of the component or wire will delete it.

If one or more components have been previously selected by ,
then they are deleted when ‘Delete’ is clicked.

15.2.5 Rotate Right/Left

When clicked, ‘Rotate Right’ or ‘Rotate Left’ action is toggled. When
‘Rotate’ is active, left mouse click on any of the component will rotate
it clockwise or anticlockwise, respectively.

15.2.6 Flip Up-down/Right-left

When clicked, ‘Flip up-down’ or ‘Flip left-right’ action is toggled.
When ‘Flip’ is active, left mouse click on any of the component will
flip it wvertically or laterally, respectively.

15.2.7 Drag Screen

When clicked, ‘Drag-screen’ action is toggled. When ‘Drag-screen’ is

active, drag the circuit drawing screen by % drag || release
left mouse button anywhere on the screen.

15.2.8 Zoom

When clicked, ‘Zoom’ action is toggled. When ‘Zoom’ is active, draw

any arbitrary rectangle in the circuit drawing window by —> drag || release
left mouse button. The circuit drawing area will be zoomed to the
rectangular area. Alternately, rolling mouse-wheel can zoom-in or
zoom-out the circuit diagram, where the mouse-pointer is present.

122 CHAPTER 15. CIRCUIT DRAWING

Edit Component Properties (X

NMOS MO

Activate Thermal Port
Parameter Value
L * |05

Modify Delete | Select Model

L0.5
@ cancel Qok

Figure 15.4: ‘Edit Parameters’ window.

15.2.9 Zoom to fit

When clicked, the circuit diagram is zoomed to fit the entire circuit
drawing. Note, that this is not a toggle-able action.
15.2.10 Edit Parameters

When clicked, ‘Edit Parameters’ action is activated. Left mouse click on
any of the component will open the component properties window (see
Fig. for that component. In this window, component parameter
values can be modified, a new model is assigned to the component, or
thermal port of the component is activated.

15.2.11 Delayed Set Params
15.3 Add Linear Menu

‘Add Linear’ menu lists linear devices such as R, L, C, I/V-sources,
controlled sources, etc.
15.3.1 Wire

When clicked, ‘Wire’ is toggled. When active, left mouse
button on a pin of the device, the cursor to another pin of the

15.3. ADD LINEAR MENU

123

Add Elhi=-1g Add Nonlinear Add Analyses/P

£ Wire
-~ Resistor
1=~ Capacitor

- |nductor
Mutual Inductance

-@- Current Source

-e- Voltage Source
Controlled-Sources
Switches
RC-Network
Transmission lines

(D Subcircuit Pin

= Ground
Functional Model
Behavioural Model

Shift+W »
Shift+R ~
Shift+C —
Shift+L

Shift+1

Shift+Vv
»
»

Figure 15.5: ‘Add Linear’ menu.

124 CHAPTER 15. CIRCUIT DRAWING

other/same device, and the button. This action will create a
wire from a pin to another.

15.3.2 Resistor, Inductor, Capacitor

When clicked, ‘Resistor’, ‘Inductor’, and ‘Capacitor’ actions are toggled.
When active, left mouse button on the circuit drawing area to
place the respective component there.

15.3.3 Mutual Inductor

Use ‘Select’ action to select two or more ‘Inductor’ components in
the circuit. After selecting, click on ‘Mutual Inductance’ button. A
window will popup asking for mutual inductance k between the selected
inductors. This will add a ‘Mutual Inductance’ to the circuit.

15.3.4 I/V sources and ground

When clicked, I/V sources or ground buttons are toggled. When
the actions are active, clicking on the circuit drawing area adds the
respective component to the circuit.

15.3.5 Controlled sources

When clicked, a drop-down menu appears, which contains toggle-able

items of [CCCS}, [CCVS}[VCCS] and [VCVS] When the actions are active,

clicking on the circuit drawing area adds the respective component to
the circuit.

15.3.6 Switches

When clicked, a drop-down menu appears, which contains toggle-able
items of Current- and Voltage-controlled switches. When the actions
are active, clicking on the circuit drawing area adds the respective
component to the circuit.

15.3. ADD LINEAR MENU 125

Dialog X

Functional Model:
Number of Pins: |0

Output Pins :

Figure 15.6: ‘Functional model’ selection window.

15.3.7 Transmission lines
When clicked, a drop-down menu appears, which contains toggle-
able items of lossless and lossy transmission-lines. When the actions

are active, clicking on the circuit drawing area adds the respective
component to the circuit.

15.3.8 RC-Network
When clicked, ‘RC-Network’ action are toggled. When active, clicking

left mouse button on the circuit drawing area to place the respective
component there.

15.3.9 Subcircuit Pin

When clicked, ‘Subcircuit Pin’ action is toggled. When active, clicking

on the circuit drawing area adds pin to it. When | File —>‘ Export Subcircuit ‘

is clicked, a subcircuit with all the ‘pins’ as output pins is exported to
a *.lib file.

15.3.10 Functional model

When clicked and activated, a new window (Fig. opens which asks
users to select the functional model to be added from the drop-down
model list. Output pins of the functional model are also requested.
Once selected, the new functional model is added to the circuit drawing
area wherever the user clicks.

126 CHAPTER 15. CIRCUIT DRAWING

[OFes %
Behavioural Model: | -

Number of Pins: 1
Parameter Value
Add/Edit Delete

Figure 15.7: ‘Behavioural model’ selection window.

Add WELINTEETY Add Analyses/Probes Simulation Help

¢ = Diode shift+D KA
B Bipolar Transistor ’ O Q ¥
O NMOS
JFET » PMOS
IGBT 4 VDMOS «
M From Library

Figure 15.8: ‘Add Nonlinear’ menu.

15.3.11 Behavioural model

When clicked, a new window opens (Fig. which asks users to
select the behavioural model to be added from the drop-down model
list. Parameters of the behavioural model can also be input. Once
selected, the new behavioural model is added to the circuit drawing
area wherever the user clicks.

15.4 Add Nonlinear Menu

‘Add Nonlinear’ menu lists nonlinear devices.

15.5. ADD ANALYSES/PROBES MENU 127

- EGEEGEIVEEEGEY Simulatior

DC Analysis 2
AC Analysis
Transient Analysis

e
wi

Voltage Probe
% Current Probe
Clear Probes

(@ Configure Solver

Figure 15.9: ‘Add Analysis/Probe’ menu.

Add DC Analysis x

Name [|

V/I Source ~ | v/l Source2

Initial Value | 0.000 < Initial Value | 0.000
Final Value 0.000 </ Final Value |0.000

Max Step Size | 0.000 < Step Size 0.000

@ cancel Qok

Figure 15.10: ‘DC Analysis’ dialog box.

15.4.1 Nonlinear components

Clicking the components in the component list toggles the actions.
When the action is action is active, a left click in the circuit drawing
area adds the respective component to the circuit.

15.5 Add Analyses/Probes Menu

‘Add Analyses/Probes’ menu lists actions which add[AC]
(DC)}, transient analyses, and V/I probes. An action to configure the
solver is also present.

128 CHAPTER 15. CIRCUIT DRAWING

Add AC Analysis x

Name I |
Spacing Decade
Points per spacing ' 1

Start Freq [Hz] 1E-3

End Freq [Hz] 1E6

@ cancel QoK

Figure 15.11: ‘AC Analysis’ dialog box.

15.5.1 DC Analyses

Clicking ‘DC Analyses’ opens a new dialog box to configure[DC|analysis.
The dialog box is shown in Fig. [[5.10] The user-specified analysis
name is used elsewhere to refer to the given [DC| analysis.

V/I source can be selected from the already added sources which
are also seen in the drop-down list. For analysis on a 2D grid of bias
points (e.g. transfer plots for different V), second source
is also selected. Else, the second source is kept empty. Initial and final
values of DC ramp, together with the step-size are also set.

15.5.2 AC Analyses

Clicking ‘AC Analyses’ opens a new dialog box to configure [AC|analysis.
The dialog box is shown in Fig. The user-specified analysis
name is used elsewhere to refer to the given [AC| analysis. Frequeny
spacing, number of points per spacing, and start/end frequencies must
be specified.

15.5.3 Transient Analyses

Clicking ‘Transient Analyses’ opens a new dialog box to configure
transient analysis. The dialog box is shown in Fig. The user-
specified analysis name is used elsewhere to refer to the given transient
analysis. Additional parameters such as start/end times, max/min
time-steps, initial time-step are specified here.

15.5. ADD ANALYSES/PROBES MENU 129

Add Transient Analysis x

Name: || |

Start Time [sec] |0.000 ~| Max time-step [sec] 0.1

Min time-step [sec] |1e-05
End Time [sec] |1.000 2
Increment 1.010 |2

Time-step [sec] |0.001 Decrease o0 |2

Ocncel [0k |

Figure 15.12: ‘Transient Analysis’ dialog box.

Figure 15.13: Diagram showing current and voltage probes placed at
the pins.

If the simulations converge, time-step is scaled up by ‘increment’
factor, else it is scaled down by ‘Decrease’ factor.

15.5.4 Voltage/Current probes

On click, ‘Voltage Probe’ or ‘Current Probe’ actions are toggled. When
‘Voltage Probe’ is active, a left-click on any of the component pins adds
voltage probe at that pin. When ‘Current Probe’ is active, a left-click
on any of the component pin adds a current probe at the pin. This
current probe measures current entering that particular component.
Voltage or current of these pins can be plotted after simulations are
over. Also, in order to use node I/V as targets of optimization, a probe
must be place at the pins before the simulation.

Voltage and current probes placed at the pin are marked by a dark
blue circle with ‘V’ sign and a cyan probe line, respectively, as shown

in Fig. [5.13)

130 CHAPTER 15. CIRCUIT DRAWING

. MEM Help

:“ B RUN -
bl Pause/Resume
o End

Figure 15.14: ‘Simulation’ menu.

15.5.5 Clear Probes

On click, this action clears any of the probes present in the circuit.

15.5.6 Configure Solver

On click, ‘Configure Solver’ action opens a window in which various
solver configurations can be viewed and modified.

15.6 Simulation Menu

The simulation menu lists actions which ‘Run’; ‘Pause/Resume’, and
‘Stop’.

15.6.1 Run

On click, this action begins simulation of the opened circuit. If spice
netlist of the circuit is not yet exported, it is exported and then
simulations begin.

15.6.2 Pause/Resume

On click, this action pauses currently running simulations. If the
simulations are already paused, it resumes the simulations.

15.6.3 Stop

On click, this action stops running simulations.

‘ Various actions listed above can also be run from the tool-bar.

15.7. SIDE-PANES 131

Analyses

Anlysis Order: | Move Up | |Move Down | Delete
DCO: .DCVO O 101

Figure 15.15: ‘Analyses’ tab in the side-pane.

15.7 Side-panes

Following tabs are present on the side-pane of the circuit drawing area.

15.7.1 Analyses

‘Analyses’ tab lists all the analyses added to the circuit (see Fig.[15.17)).
The analyses entries are listed as follows.

<name><id>: <spice command>

Here, <name> means user-defined analysis name, <id> is analysis-id,
and <spice command> is the line corresponding to the analysis in the
spice simulator.

Multiple analyses can be added one after another. They will be

listed in the side-pane. The click-button moves up the
selected analysis in the list. The button moves the

analysis down, whereas the button deletes the analysis.

The analyses will be run according to the order in which they are
listed in ‘Analyses’ side-pane.

15.7.2 Functions and Parameters

‘Functions and Parameters’ tab lists all the user-defined parameters and
functions added to the circuit. The click-button ‘ New Parameter | and

New Function | add a new parameter and a new function, respectively,

to the circuit. The button | Validate | checks if the selected function

132 CHAPTER 15. CIRCUIT DRAWING

Functions and Parameters

New Parameter | | New Function || Validate Delete

Figure 15.16: ‘Functions and parameters’ tab in the side-pane.

expression is a valid expression, and whether all the parameters used

in the function are already defined. The button deletes the
selected parameter or function.

15.7.3 Components

‘Components’ tab lists all the components added. Note, that compo-
nents list is updated only after the circuit is exported to the netlist
circuit.

15.7.4 Plot Properties

‘Plot Properties’ tab provides an interface to plot current and voltages
at the I/V-probes. Select Analysis selects the analysis whose data
is plotted. Data to be plotted on left and right Y-axis are listed in
left and right legends. Double clicking the legend can edit legend
properties. Min/max span of X, left-Y, and right-Y axis, axis labels

can be specified in corresponding text boxes. | Create Plot | creates a

new plot.

15.7.5 Fitting/Optimization

‘Fitting/Optimization’ tab (see Fig. [15.18]) provides an interface to run
optimization of the given circuit (see Fig. [15.17).

Left window in the tab displays a list of fitting-parameters added
by the user. To add one or more fitting paremeters, left-click on the

adjacent toggle-able button. It will toggle state. When

15.7. SIDE-PANES 133

Plot Properties

Select Analysis

LeftY Axis = Delet

e ||Move To Right | Right Y Axis =~ Delete | Move To Left|

Legend Colo

r Type Legend Color Type

PHi

Plot Properties

Create Plot |

Axis min max label log
x| I I |
YL | I I |
YR | I I |
-

Figure 15.17: ‘Plot Properties’ tab in the side-pane.

Fitting / Optimization

Device params To Fit: | Add || Delete |Objectives: | Add [l Delete |
Comp Param Min Max | Name Analysis 1d Mode
d v [A] —
Optimization: Optimization Method: | BFGS v |
|K\ |T| Maximum Iterations |0 ‘:|
|W| Terminate: Error < | |

| Accept Fitted Params |

Figure 15.18:

Gradient norm < | |

‘Fitting/Optimization’ tab in the side-pane.

134 CHAPTER 15. CIRCUIT DRAWING

Objective Name: Select Analysis A

Task: Minimize Maximize Fit Constraint
Voltage difference I-source weight

Objective: (1v - C~v)x 1v x|1.0
Limits of obj. integral

Integration Limits: Start: End:
Constraint: min max Penalty
Expression: Probe: v | Add

Fit to data in file: Browse
csv file with experimental data

@ Cancel aQK

Figure 15.19: ‘Fit Objective’ window to add an objective.

is active, click on any of the components in the circuit to select the
component whose parameter is to be fitted/optimized. A dialog box
requesting the component parameter and its min, max, current values

opens up. Clicking adds the selected parameter of the component

as a fitting parameter. Clicking deletes highlighted parameter
from the fitting-parameters list.

Right window in the tab displays a list of user-defined fitting/optimization

objectives. To add an objective, left-click on the adjacent button.
A dialog box as shown in Fig. [[5.19 opens up. In this box, you can
select objective name, analysis, expression to be used for fitting, etc. In
the case of fitting, a csv file containing experimental data corresponding
to the objective should also be provided.

Input parameters for the fitting procedure including fitting algo-
rithm are specified in the bottom right corner. For description of the
parameters, refer to Chapter [14}

15.7. SIDE-PANES 135

The buttons | Start |, | End |, and | Pause/Resume | are used to start

the optimization, end it, or pause a running optimization/resume a
stopped one.

Appendix A

Notation and Acronyms

Acronyms
AC Alternating Current
BE Backward-Euler
BJT Bipolar Junction Transistor
CCCS Current-controlled Current Source
CCVS Current-controlled Voltage Source

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

DC Direct Current
JFET Junction Field Effect Transistor
LTE Local Truncation Error

MESFET Metal-Semiconductor Field Effect Transistor

137

138

RHS

TL

VCCS
VCVS

Acronyms

Right Hand Side
Transmission Line

Voltage-controlled Current Source
Voltage-controlled Voltage Source

Bibliography

139

	1 Introduction
	1.1 Features
	1.2 Installation
	1.3 Licensing
	1.3.1 Purchasing the licenses
	1.3.2 Node-locked license activation
	1.3.3 Server license activation
	1.3.4 Testing

	2 Linear Components
	2.1 Passive Components
	2.1.1 Resistor
	2.1.2 Inductor
	2.1.3 Mutual inductance
	2.1.4 Capacitor

	2.2 Active components
	2.2.1 Voltage source
	2.2.2 Current source
	2.2.3 Transient waveform shapes

	2.3 Dependent sources
	2.3.1 Voltage-controlled voltage source
	2.3.2 Voltage-controlled Current source
	2.3.3 Current-controlled voltage source
	2.3.4 Current-controlled current source

	2.4 Switches
	2.4.1 Voltage-controlled switch
	2.4.2 Current-controlled switch

	2.5 Transmission line models
	2.5.1 RC Network
	2.5.2 Lossless TL
	2.5.3 Lossy Transmission line

	3 Transfer-function or state-space models
	3.1 Transfer-function model
	3.2 State-space model
	3.3 Circuit model of the system
	3.3.1 Transfer-function definition
	3.3.2 State-space definition

	4 Non-linear Components
	4.1 Diode component
	4.2 BJT component
	4.3 JFET component
	4.4 MOSFET component
	4.5 MESFET component

	5 Subcircuits and Parametric Equations
	5.1 Node Voltages and Currents in Parameter Expressions
	5.1.1 External Subcircuit Library

	6 Thermal Circuit Solver
	6.1 Thermal components
	6.1.1 Resistance
	6.1.2 Capacitor
	6.1.3 Voltage source
	6.1.4 Current source

	6.2 Heat generation in electrical components
	6.3 Setting Component Temperature
	6.4 Example circuit

	7 Python Interface
	7.1 Example python script
	7.2 Read Circuit File
	7.3 Edit Parameters
	7.4 Add Analyses
	7.5 Read Solution Data

	8 Functional Modeling of The Driver Chip
	8.1 Defining the functional model
	8.1.1 Defining the model class
	8.1.2 Creating the driver instance
	8.1.3 Creating the driver in the netlist file
	8.1.4 Linking the functional model to the driver

	8.2 Python model library file

	9 Behavioural Model Interface
	9.1 Defining the behavioural model
	9.1.1 Behavioural model class definition
	9.1.2 Use of auto-differentiation
	9.1.3 Example code
	9.1.4 Linking the behavioural model to the driver

	9.2 Python model library file

	10 Circuit Analyses
	10.1 DC analysis
	10.2 AC analysis
	10.3 Transient analysis
	10.3.1 Time-stepping

	10.4 Solver settings

	11 Circuit Netlist File Format
	11.1 Circuit File structure
	11.2 Output files

	12 Linear Circuit simulation
	12.1 R-C circuits
	12.2 L-R circuits
	12.3 R-L-C circuits
	12.4 RC-networks
	12.5 Lossless TL
	12.6 Lossy TL

	13 Nonlinear Circuit simulation
	13.1 Full-bridge rectifier
	13.2 BJT amplifier
	13.3 MOSFET amplifier

	14 Circuit Optimization
	14.1 Optimizer functions
	14.1.1 Initialize
	14.1.2 Setup optimizer
	14.1.3 Optimize

	14.2 Example Code

	15 Circuit Drawing Application
	15.1 File-menu
	15.1.1 New
	15.1.2 Open File
	15.1.3 Save File
	15.1.4 Save File As
	15.1.5 Import Library
	15.1.6 Import Python Models
	15.1.7 Export Netlist
	15.1.8 Export Subcircuit
	15.1.9 Save As Svg

	15.2 Edit-menu
	15.2.1 Select
	15.2.2 Move Component
	15.2.3 Copy Component
	15.2.4 Delete
	15.2.5 Rotate Right/Left
	15.2.6 Flip Up-down/Right-left
	15.2.7 Drag Screen
	15.2.8 Zoom
	15.2.9 Zoom to fit
	15.2.10 Edit Parameters
	15.2.11 Delayed Set Params

	15.3 Add Linear Menu
	15.3.1 Wire
	15.3.2 Resistor, Inductor, Capacitor
	15.3.3 Mutual Inductor
	15.3.4 I/V sources and ground
	15.3.5 Controlled sources
	15.3.6 Switches
	15.3.7 Transmission lines
	15.3.8 RC-Network
	15.3.9 Subcircuit Pin
	15.3.10 Functional model
	15.3.11 Behavioural model

	15.4 Add Nonlinear Menu
	15.4.1 Nonlinear components

	15.5 Add Analyses/Probes Menu
	15.5.1 DC Analyses
	15.5.2 AC Analyses
	15.5.3 Transient Analyses
	15.5.4 Voltage/Current probes
	15.5.5 Clear Probes
	15.5.6 Configure Solver

	15.6 Simulation Menu
	15.6.1 Run
	15.6.2 Pause/Resume
	15.6.3 Stop

	15.7 Side-panes
	15.7.1 Analyses
	15.7.2 Functions and Parameters
	15.7.3 Components
	15.7.4 Plot Properties
	15.7.5 Fitting/Optimization

	A Notation and Acronyms
	Acronyms

