

Salient features

The circuit solver takes circuit netlists in spice format and performs desired set of simulations. Salient features –

- Supports non-linear circuit solver,
- Parameterized electronic components,
- Allows user-defined parameters and math functions,
- Python scripting enabled • Parameters editing and processing results in python, • Use of data-processing and optimization libraries.
- User-defined functional and behavioural models in Python.
- Coupled electro-thermal solver enabled in DC, AC, and transient.

Supported circuit components

The circuit solver supports the following components –

- Linear components R, L, C, and mutual-inductance,
- Voltage- and current-controlled switches,
- Lossless and lossy transmission lines, RC network,
- Non-linear components Diode, JFET, MOSFET, MESFET, and BJT,
- AC, DC, and transient I/V sources,
- Dependent sources VCVS, CCVS, VCCS, CCCS.
- Subcircuits can be parameterized and math functions can be defined.
- *Heat generation* enabled in passive components.
- Heat conduction use thermal R and C.

Collaboration

We are open to collaborating with the users to add customized non-linear components.

Circuit Solver SemiVi LLC, Switzerland.

Functional compact models

Functional modeling interface: A quick way of modeling functionality of a digital chip (e.g. drivers, signal-processors) in the analog circuit.

```
class SimpleDriver (cs.functionalmodel):
  def updateOutputPinVoltages (self,
            isOutputPin, inputV, time):
    • • •
```

```
return outV
```

Behavioural compact models

Behavioural modeling interface: Define a custom compact model of non-linear devices in Python.

```
class MyDiode (cs.behaviouralmodel):
  def getDerivativesAndPinCurrents
                  (self, inputV, time):
    • • •
```

return np.append (outdI, outI)

Python Interface

• Python-interface allows modifying model parameters, analysis, and result extraction.

import circuitsolver as cs p = cs.circuit() p.readSpiceCircuitFile(...) R3Now = p.getComponentParamVal(...) p.setComponentParamVal(...)

Circuit Optimizer

• Built-in circuit-optimizer: *compact model calibration* and performance optimization.

f = cs.optimizer(p)

- f.setOptimizationAlgorithm(...)
- f.addOptimizationParameter(...)
- f.addExperimentalDataAndPower(...)
- f.optimize()

Circuit Draw - GUI

Monubor To							
Menubar loc	bi-bar				QC	ircuit	Edit
File Edit Add	Linear Add N	onlinear A	dd Analys	es/Probes	Simulation	Help	param
New circuit Open circuit	→ N DII Run analysis Export circuit as netlist	Select	Copy	Rotate left/right	. ₾ 	Zoom o fit	ete V
	Circuit drawing board						
	Status-bar /						
No message 🖌	/						

Circuit Draw

Circuit draw provides a user-friendly GUI for –	A detai
• Circuit drawing,	• Equa
• Setting analyses and simulations,	• Parar
• Results visualization,	• Vario
• Circuit optimization.	• Pythe
License Purchase	
Send the organization details along with –	

- Node-locked licenses: mac-id of the machine.
- Server licenses: mac-id of the server.

User-manual and examples

iled user-manual provides –

ations corresponding to each of the components, meters of various components and their usage, ous analyses and default parameters, on interface and various functions therein.

Contact Information

• Web: http://www.semivi.ch • Email: info@semivi.ch • Phone: +1 (000) 111 1111