
1

Solver

2

User Guide v-1

Drift-Diffusion Simulator
User Guide

SemiVi LLC
Zollikon, Switzerland.

November 2, 2025

Contents

1 Introduction 1
1.1 Features . 1
1.2 Installation . 2
1.3 Licensing . 3

1.3.1 Purchasing the licenses 3
1.3.2 Installation of SemiVi-activator 4
1.3.3 License activation 4

2 Device Simulator Config File 5
2.1 Drift-diffusion (DD) Solver Config File 5
2.2 File section . 8
2.3 Contacts section . 9
2.4 Physics section . 9
2.5 Math section . 10
2.6 Plot section . 10
2.7 Solve section . 11
2.8 Material parameters 11

2.8.1 Mole Fraction dependence 13
2.9 Running DD simulations 14
2.10 Visualizing results . 17

3 Mixed-mode Analysis 21
3.1 Config File . 21
3.2 File section . 25
3.3 Device section . 25
3.4 System section . 25

3

4 CONTENTS

3.5 Math section . 25
3.6 Plot section . 26
3.7 Solve section . 26
3.8 Running mixed-mode simulations 26

4 Small-signal Analysis 29
4.1 Alternating Current (AC) Analysis Config File 29
4.2 ACAnalysis section . 32
4.3 Running small-signal analysis 32

5 Drift-diffusion Solver Equations 37
5.1 Poisson equation . 37
5.2 Carrier continuity equation 38
5.3 Coupled and self-consistent solver 39
5.4 Domain Boundary Conditions 40

5.4.1 Mirror Boundary Condition (BC) 40
5.4.2 Periodic Boundary Condition (PBC) 40
5.4.3 Defining PBC 42

5.5 Electrical Boundary conditions 42
5.5.1 Ohmic contacts 42
5.5.2 Schottky contacts 43
5.5.3 Contact Resistances 44

5.6 Nonlinear solver . 44
5.6.1 Available Linear Solvers 45
5.6.2 Convergence criterion 46

6 Band-structure models 47
6.1 Band-gap . 47

6.1.1 Band-gap Narrowing 48
6.1.2 Electron affinity 49

6.2 Carrier distribution . 49
6.2.1 Boltzmann approximation 50
6.2.2 Approximate Fermi 50
6.2.3 Density of States 50

CONTENTS 5

7 Mobility models 53
7.1 Bulk mobility . 53
7.2 Doping dependence . 54

7.2.1 Masetti model 54
7.3 Mobility degradation in the channel 55

7.3.1 Lombardi model 56
7.4 High field saturation 58

7.4.1 Canali model 58

8 Effect of mechanical stress 61
8.1 Stress-strain modeling 61
8.2 Band-edge shift . 63

8.2.1 Conduction Band (CB)-edge shift 63
8.2.2 Valence Band (VB)-edge shift 64

8.3 Mobility modification 65

9 Generation-Recombination models 67
9.1 Shockly-Read-Hall recombination 67

9.1.1 Carrier lifetimes 68
9.2 Band-to-band generation 69
9.3 Fowler-Nordheim tunneling 70
9.4 Impact ionization . 72

9.4.1 Van Overstraeten model 73
9.5 Optical generation . 73

9.5.1 Constant generation 74
9.5.2 Generation from file 75
9.5.3 Approximate Radiative Recombination 75

10 Traps 77
10.1 Trap types . 77

10.1.1 Donor type traps 77
10.1.2 Acceptor type traps 77

10.2 Defining Bulk Traps 78
10.3 Energetic trap distributions 78
10.4 Spatial trap distribution 80
10.5 Trapping and de-trapping models 81

10.5.1 Trap occupancy 82
10.5.2 Capture and emission rates 82

6 CONTENTS

10.6 Config file of diode with traps 83

11 Nonlocal tunneling models 91
11.1 Non-local mesh . 91
11.2 Intra-band tunneling 92
11.3 Band-to-band tunneling 94
11.4 Trap-to-band tunneling 95
11.5 Parameters . 97
11.6 Visualization . 97

12 Electro-thermal simulations 99
12.1 Config file . 99
12.2 Contacts section . 101
12.3 ThermalContacts section 102
12.4 Physics section . 102
12.5 Solve section . 102
12.6 Material config file . 102
12.7 Heat transport equation 103
12.8 Heat conductivity . 103
12.9 Heat capacity . 103
12.10Heat generation in metals 104
12.11Heat generation in semiconductors 104
12.12Electro-thermal simulations of Metal-Insulator system 104

A Notation and Acronyms 109
Acronyms . 109

Chapter 1

Introduction

The DD solver provided by SemiVi can simulate the semiconductor
devices by using drift-diffusion formalism. Also, temperature equations
can also be coupled with the DD equations to model heat generation
and transport during device operation. Additionally, the circuit-
system composed of the semiconductor devices and the external circuit
components is also solved coupled with the DD equations to simulate
the device operation. It takes a device structure and the DD solver
config file as an input and performs the simulations as specified in the
config file. Static, quasi-stationary, transient simulations, as well as
small-signal analysis can be performed with the DD solver.

The simulations generate a ‘.csv’ file containing voltages and cur-
rents at each of the contacts. Also, spatial distribution of various
physical quantities such as carrier densities, electrostatic potential are
stored at various time points during the simulation.

1.1 Features

The DD solver has the following features.

• The DD solver can perform a quasi-stationary ramp, small-signal
analysis at a fixed DC bias, and a transient analysis.

1

2 CHAPTER 1. INTRODUCTION

• Coupled Poisson, electron and hole continuity equations are
solved in the DD solver for the above mentioned analyses.

• Coupled electro-thermal simulations can also be performed in
the DD solver by solving temperature equation coupled with the
continuity and Poisson equation.

• The circuit-system consisting of the semiconductor devices and
the external components can be solved coupled with drift-diffusion
equations.

• Physics based models are available in the DD solver to mimic
various physical processes in semiconductors.

• The model parameters can be edited in the material config file,
thus allowing the models to be calibrated to the experimental
data.

1.2 Installation
SemiVi currently supports software installation on various Linux
distributions. The software installer is available in Debian package
(*.deb file) and in RPM format (*.rpm file).

Note, that if you have downloaded mkl version of the DD solver,
the following package needs to be installed manually by you before
installing the circuit solver from the installer package.

• Intel math kernel libraries (released in 2020 or later), which
include distributions of open-mp, pardiso, etc. specific for Intel
processors.

The DD solver sources mkl functions from the above installation. These
functions can offer speed-up in the calculations on Intel processors.
The mkl package can be downloaded from Intel website.

If the DD solver without mkl-acceleration is downloaded, then
installation of the above package is not necessary.

Once Intel math kernel libraries are installed, download the
installer on the local machine. The installer file named ddsolver_amd64.deb
will appear in the Downloads directory. Go to the directory using cd

1.3. LICENSING 3

command. Use the following command to install the DDSolver from
the installer.

>> sudo apt install ./ddsolver_amd64.deb

Alternately, one may use dpkg to install the software and use apt
to install missing dependencies as follows.

>> sudo dpkg -i ./ddsolver_amd64.deb
>> sudo apt install -f

You need to have root access to install the software on your
machine.

1.3 Licensing
Two types of licenses can be purchased for SemiVi DD solver.

Node-locked licenses enable unlimited number of simultaneous
executions of the DD solver on the client machine. The node-locked
license limits the usage of the DD solver only to the machine on which
the license is activated.

With server licenses, the DD solver can be run on any of the ma-
chines in the client organization on which the server license is activated.
However, only the specified number of simultaneous executions are
possibie at a time.

1.3.1 Purchasing the licenses

The clients can place order for any of the above licenses on SemiVi
website (https://www.semivi.ch/sales) or by contacting our sales-
person.

We will process the request and send the license files by email. The
license files need to be activated on the desired machines using the
license key which is emailed separately using the following command.

https://www.semivi.ch/sales

4 CHAPTER 1. INTRODUCTION

1.3.2 Installation of SemiVi-activator
The license file must be activated on the desired computer before use.
For that purpose, download the installer semivila_amd64.deb file on
the local machine and install it as follows.

>> sudo apt install ./semivila_amd64.deb

1.3.3 License activation
To activate the license file, please run the following command.

>> semivila -a File.lic <Server|NodeLocked>License.lic\\

Replace File.lic with the your license file, and use appropriate
name for the activated file. You will be prompted to input the
16 digit license key. A successful activate of the license file will
generate the activated license file. Copy the activated license file to the
/opt/semivi/licenses/ folder and rename it to ServerLicense.lic
or NodeLockedLicense.lic for server and node-locked licenses respec-
tively. If you have more than one license files, please delete the older
expired license files. If you wish to keep more than one active license
files, you can also name the license files as <i>NodeLockedLicense.lic
where <i> could be from 0 to 49. For ex. 49NodeLockedLicense.lic
or 49ServerLicense.lic. The program will read the license files and
lock the first available license. All the target users must have read
rights on the license file.

User-guides of all the software provided by SemiVi are stored at
the location /opt/semivi/userguides/.

Tutorials of all the software provided by SemiVi are stored at the
location /opt/semivi/tutorials/ddsolver.

Chapter 2

Device Simulator Config
File

DD solver software reads various inputs from DD solver configuration
file and performs DD simulations on the device structure. The program
can be executed using the following command –

>> DDSolver ddsolver FinFET_dev.cfg

In the above command, the word after DDSolver is the name
of the program to be executed (in this case – ddsolver). The
program name is followed by the configuration file name (in this
case – FinFET_dev.cfg).

2.1 DD Solver Config File
A sample configuration file of the DDSolver is provided below.

File: {
Device = "FinFET_str.cfg";
Out = "FinFET";

}

5

6 CHAPTER 2. CONFIG FILE

Contacts: {
gate: {Voltage = 0.0; WorkFunction = 4.8; Type = ["Insulator"]; }
source: {Voltage = 0.0; Type = ["Semiconductor"]; }
drain: {Voltage = 0.0; Type = ["Semiconductor"]; }

}

Physics: {
BandStructure: {

CarrierDistribution: { ApproximateFermi: []; }
}
Mobility: {

DopingDep: { Masetti: []; }
}
Recombination: {

SRHRecombination = ["DopingDep"];
}

}

Physics*Region*RegSi: {
Mobility: {

DopingDep: {
Masetti: [];

}
FieldDep: {

Lombardi: [];
}

}
Recombination: {

SRHRecombination = ["DopingDep"];
}

}

Math:
{

IterationsFC = 40;
InnerIterationsFC = 10;
IterationsSC = 40;

2.1. DD SOLVER CONFIG FILE 7

UndampedIterations = 0;
FCSolverTolerance = 1.;
SCSolverTolerance = 1.;

SolverSettings = [
"InterpolateElecPotential",
"InterpolateElecFermi"
,"InterpolateHoleFermi"
];

}

Plot:
{

Quantities = ["ElectronDensity",
"AbsElectricField",
"ElectrostaticPotential",
"TotalRecombination",
"ElectronMobility",
"AbsElectronCurrent",
"AbsHoleCurrent"];

}

Solve:
{

Static*Poisson: {
Coupled: ["Poisson"];
PlotTime = [0.];

}

Quasistationary*Drain: {
initstep = 1E-3; minstep = 1E-5; maxstep = 0.1; incr = 1.35; decr = 2;
Ramp: {

Voltage*drain = 1.;
}
Coupled: ["Poisson","Electron"]
PlotTime = [0., 0.5, 1.0];
Math: {

IterationsFC = 40;

8 CHAPTER 2. CONFIG FILE

FCSolverTolerance = 1.;
}

}

Quasistationary*Gate: {
initstep = 1E-3; minstep = 1E-5; maxstep = 0.1; incr = 1.35; decr = 2;
Ramp: {

Voltage*gate = 1.0;
}
Coupled: ["Poisson","Electron"]
Math: {

IterationsFC = 40;
FCSolverTolerance = 1.;

}
PlotTime = [0., 0.05, 0.5, 1.0];

}
}

The above config file is composed of various sections which define
the math settings, solve, physics, contacts, the quantities to be plotted,
etc. In the config file, the string before ’*’ gives the section type,
whereas the string after ’*’ specifies the section name. Various keywords
in each of the section and their functionality is shortly described below.

2.2 File section
The keyword Device provides the file name from which the device
structure is created. Internally, the file is processed differently accord-
ing to its extension.

• If the file extension is “str.cfg”, the file is processed as an input
file for the tensor mesh generation.

• If the file extension is “str.h5”, The file is read as hdf5 file
generated by the structure and mesh generator. Note, that DD
solver treats mesh created using external meshing programs such
as Triangle or TetGen in the same way as internal quad-tree/Oct-
tree based mesh.

2.3. CONTACTS SECTION 9

The keyword Out sets the prefix to the output file name. In this
case, the output files will be called ‘FinFET <id> dev.xdmf’ and
‘FinFET <id> dev.h5’.

2.3 Contacts section
Properties and voltages of all the electrical contacts are initialized
in this section. Every electrical contact defined in the structure file
must be listed in the section. In this case, the contacts ‘gate’, ‘source’,
and ‘drain’ have been listed. Each of them have a group of entries in
curly brackets {...} in which initial voltage, contact resistance, and
work-function are specified. Also, the keyword Type sets a list of
strings which set the contact type. ‘gate’ is listed as an insulator
contact while ‘source’ and ‘drain’ are semiconductor ohmic contacts.

2.4 Physics section
Region-specific, material-specific, or device-specific physical models
can be listed in different physics sections of the config file. There
can be only one global Physics section which lists the models active
throughout the device. The section named ‘Physics*Material*<mat>’
lists models active in all the regions of material <mat>. Whereas,
the section named ‘Physics*Region*<reg>’ lists models active in the
region named <reg> in the device. In selecting active models in a
given region, region-wise physics section gets precedence over material
Physics section, whereas material physics section gets precedence over
global physics section.

For convenience, bulk semiconductor models specified in the file
have been separated into four sub-sections.

1. BandStructure: Use ApproximateFermi formula for calculating
CarrierDistribution.

2. Mobility: Use Masetti formula to model doping dependence
(DopingDep) of bulk mobility. Also, use Lombardi model for
mobility degradation at the interfaces.

10 CHAPTER 2. CONFIG FILE

3. Recombination: Use SRHRecombination model together with
doping dependent carrier lifetimes (DopingDep).

Multiple models can be specified in each section. If they are not
conflicting with each other, they are combined together. Else, any one
of the models gets precedence over the other.

2.5 Math section

Various parameters required for DD simulations are listed in Math
section. Keywords IterationsFC and IterationsSC respectively,
set maximum iterations of coupled solver and self-consistent solver.
Similarly, FCSolverTolerance and SCSolverTolerance set tolerance
of coupled solver and self-consistent solver, respectively.

SolverSettings gives a list of comma separated strings which
specify what type of calculations are to be performed. For example,
InterpolateElecPotential, InterpolateElecFermi, and InterpolateHoleFermi
specifies that electrostatic potential, electron Fermi energy, and hole
Fermi energy for the next bias point is set by extrapolating the
respective quantities from current and previous bias point.

Parameters defined in global math section are applied to all the
ramps in solve section. Math section can also be defined in each ramp
in Solve section.

2.6 Plot section

A list of physical quantities to be stored is specified with the keyword
Quantities. These physical quantities are stored at each bias point
provided by PlotTime keyword in Solve section. They are stored in
a hdf5 file ‘<out> <id> dev.h5’, where <out> is the prefix provided
in File section and <id> is the bias point number. A xdmf script
file ‘<out> <id> dev.xdmf’ is also saved for visualizing the above
quantities in paraview.

2.7. SOLVE SECTION 11

2.7 Solve section
Solve section described the types of bias (or other) ramps to be
performed in the same order as listed in the section. Three types of
bias ramps, which are Static, Quasistationary, and Transient are
available in DD solver.

Static simulation is performed at existing bias point, whereas
Quasistationary simulation is performed at all the bias points start-
ing from existing bias point ending at the bias point set by the
Ramp group in Quasistationary simulation. In this case, Static
simulation named ‘Poisson’ is performed at an initial bias point
VG = 0V , VD = 0V , and VS = 0V . After that, Quasistationary
simulation named ‘Drain’ is performed in which VD is ramped from 0V
to 1.0V. This is specified in Ramp group by specifying final voltage by
Voltage*<Cont> command. This is followed by a Quasistationary
simulation named ‘Gate’ is performed in which VG is ramped from 0V
to 1.0V. Since the drain voltage is not specified in ‘Gate’ ramp, it is
kept fixed at its value from the earlier ‘Drain’ ramp (1.0V).

Coupled simulation lists all the solution variables which are to
be calculated using the coupled solver. In this case, Poisson and
Electron specify that Poisson equation and electron continuity equa-
tion are solved using the coupled solver.

PlotTime specifies a list of time points at which values of all
the listed physical quantities listed in Plot section are to be stored.
Starting time of each quasi-stationary ramp is set to 0.0 and end time
is 1.0.

Math section defined in each of the ramps, sets Math parameters
specific for that specific ramp. If Math section is not specified in the
given ramp, then the parameter values set in the global Math section
are used.

2.8 Material parameters
The formulas used in various physical models have material specific
parameters which have been fitted to the experimental data of the
material. These material-specific parameter values are stored in a
material config file <mat>.cfg, where <mat> is the material name.

12 CHAPTER 2. CONFIG FILE

When reading or creating a device, the material-specific parameter
values are parsed from this config file and stored for every material in
the device. A section of the material config file is shown below.

MaterName = "Silicon";
MaterType = "Semiconductor";
...
Mobility:
{

...
Masetti:
{

mumin1 = [52.2, 44.9];
mumin2 = [52.2, 0.];
mu1 = [43.4, 29.];
Pc = [0., 9.23E16];
Cr = [9.68E16, 2.23E17];
Cs = [3.43E20, 6.1E20];
alpha = [0.68, 0.719];
beta = [2., 2.];
T0 = 300.;

}
...

}

Recombination:
{

...
}
...

In the material config file, Material name is specified with the keyword
MaterName. Type of the material is specified with the keyword
MaterType. Following material types are supported.

• Semiconductor

• Insulator

2.8. MATERIAL PARAMETERS 13

• Metal

The physical models are separated into various sections, depending
on their applications. In each section, the models are listed under
their keywords. For example, parameters of Masetti model used in
doping-dependent mobility calculations are listed in Masetti subgroup
of Mobility group. If the parameter values are different for electrons
and holes, then they are listed as a list of two floating points. For
example, in the above file, mumin1 is set to 52.2 for electrons and 44.9
for holes. Common parameters for both electrons and holes, e.g. T0 in
Masetti model, are listed as a single value.

2.8.1 Mole Fraction dependence
Semiconductor alloys are composed of a fraction of two elemental or
compound semiconductors. For example, the alloy AlxGa−1− xAs is
composed of x mole fraction of AlAs and 1− x of GaAs. Such alloys
are often used device fabrication for various purposes such as, creating
quantum wells, introducing strain, etc.

Certain model parameters of these alloys are mole-fraction depen-
dent. They are calculated by interpolating the parameter values of
the end semiconductors. In the material config file of ‘AlGaAs’, such
fraction dependent parameter values are specified as follows.

MaterName = "AlGaAs";
MaterType = "Semiconductor";
...
BandStructure:
{

BandGap:
{

Chi0*Xdep =[0., 4.07, 0.45, 3.575, 1., 3.5];
Eg0*Xdep = [0., 1.424, 0.45, 1.985,1.,2.17];
alpha = 1E-4;
beta = 270.0;
...

}
...

14 CHAPTER 2. CONFIG FILE

}
...
Recombination:
{

SRHRecombination:
{

taumaxe*Xdep =[0., 1E-6, 1., 1E-6];
taumaxh*Xdep =[0., 1E-6, 1., 1E-6];
taumin = [1E-6, 1E-6];
Etrap = 0.;
...

}
...

}
...

The above snippet of ‘AlGaAs.par’ config file shows how mole-fraction
dependent values are specified for electron and hole-specific parameters
and for common parameters. Mole-fraction dependent parameters are
noted as <par>*Xdep, where <par> is parameter name. The parameter
name is set to an [..] array. Each odd element of the [..] array
specifies mole-fraction which is followed by the parameter value at that
mole fraction. In the above file, band gap of AlGaAs is specified for
different mole-fractions x = 0, , 0.45, 1.0 with the keyword Eg0*Xdep.

If the parameter has e,h-specific values, append ’e’ to the parameter
name to specify e-specific value, and append ’h’ tp specify h-specific
value as an [..] array. The array specifies mole fractions followed by
the parameter value as described above. In the above file, mole-fraction
dependent life-time in SRH recombination is specified for mole-fractions
x = 0, 1.0 with the keywords taumaxe*Xdep and taumaxh*Xdep.

2.9 Running DD simulations
The above config file is used to perform DD simulations of a 2D
FinFET structure shown in Fig. 2.1. The structure is created using
the command
>> DDSolver str FinFET_str.cfg.

2.9. RUNNING DD SIMULATIONS 15

(a) Regions

(b) Doping

(c) Contacts

Figure 2.1: (a) 2D FinFET structure, (b) Doping concentration, and
(c) Contact information set by the config file.

The above command stores structure and mesh information in the
file named ‘FinFET str.h5’ and also writes ‘FinFET str.xdmf’ script
file for visualizing that mesh in paraview.
>> paraview FinFET_str.cfg.

Once paraview is opened, see the Pipeline Browser window.
Highlight FinFET_str.xdmf file and click the button Apply below
in Properties tab. You will see the device with spatial doping
concentration as shown in Fig. 2.1(b). Now, select ElementRegionMap
instead of DopingConcentration. Also, open Color Map Editor and
select the option Interpret Values As Categories. Elements will
be colored as per the region id they belong to (see Fig. 2.1(a)).

16 CHAPTER 2. CONFIG FILE

(a) FEM mesh

(b) Triangle mesh

Figure 2.2: 2D FinFET structure generated by (a) Quadtree-based
FEM mesher, and (b) Triangle mesher.

Similarly, select VertexContactMap and open Color Map Editor
and select the option Interpret Values As Categories. Vertices
will be colored as per the contact they belong to (see Fig. 2.1(c)).
Vertices which belong to Source are colored green (for id 0), those
of the Gate are blue (for id 1), while those which belong to Drain
are colored yellow (for id 2). Vertices belonging to the semiconductor
regions are red (for id -1) and insulator regions are white (for id -2).

For visualizing mesh, find the drop-down menu written Surface
and change it to Surface With Edges. Mesh will be displayed as
shown in Fig. 2.2(a). Change MeshType to "TetMesh" and rerun
mesher. View the new mesh file with paraview. It will look like in
Fig. 2.2(b). The two mesh engines available in the mesher give the
same transfer characteristics on simulation.

It is not necessary to generate the structure before simulating it.
The config file for generating the structure (‘FinFET str.cfg’) can
be specified as Device in File section of the mode solver config file
‘FinFET dev.cfg’. The solver internally generates the structure and
passes it to the DD solver. The structure config file must also be
present in the same folder. Once the config file is set, DD simulations
can be performed using the following command

>> DDSolver ddsolver FinFET_dev.cfg

2.10. VISUALIZING RESULTS 17

Figure 2.3: Transfer characteristics of the FinFET obtained by
simulating it with the DDSolver. Transfer characteristics of the same
FinFET structure created by two different meshers, namely, FEM and
Triangle give nearly the same results.

2.10 Visualizing results

DD simulations generate xdmf files (extension *.xdmf) together with
hdf5 files (extension *.h5) at the specified bias points. It also generates
a csv file named ‘FinFET dev.csv’ in which voltages and currents at
each of the contacts at each bias point calculation are stored. Transfer
characteristics stored in the ‘csv’ file are plotted vs. the gate voltage
in Fig. 2.3.

Spatial distribution of various physical quantities at given bias
points is stored in the hdf5 files. Corresponding ‘*dev.xdmf’ files can
be used to visualize the data in paraview.
>> paraview FinFETGate_3_dev.xdmf
Electron density, absolute electric field, abs electron current, etc. at
Vgs = 1.0V and Vds = 1.0V are loaded to the paraview using the
above command and can be visualized. At Vgs = 1.0V, channel has
already formed and electron density is higher at oxide-Silicon surface
as seen in Fig. 2.4(a). Electron mobility is lower in the source and

18 CHAPTER 2. CONFIG FILE

(a) Electron density

(b) Electron mobility

(c) Magnitude of electron current

Figure 2.4: Spatial distribution of (a) electron density, (b) mobility,
and (c) magnitude of electron current is plotted at the bias point of
Vgs = 1.0V and Vds = 1.0V.

the drain due to the mobility degradation caused by heavy doping, as
shown in Fig. 2.4(b). It also varies in the channel region due to the
normal field dependent mobility degradation. Absolute current flows
(Fig. 2.4(c)) is distributed throughout the channel region due to the
narrow FinFET width which causes volume inversion as opposed to
surface inversion in the bulk MOSFETs.

Fig. 2.5 plots various quantities at Vgs = 50mV and Vds = 1.0V. At
Vgs = 50mV, the channel is off and electron density is localized at the
source and the drain as shown in Fig. 2.5(a). Entire Vds = 1.0V drops
at channel-drain junction resulting in reverse biased p-n junction. SRH
generation takes place at the p-n junction as shown in Fig. 2.5(b). Small

2.10. VISUALIZING RESULTS 19

(a) Electron density

(b) Electron mobility

(c) Magnitude of electron current

Figure 2.5: Spatial distribution of (a) electron density, (b) SRH
recombination rate, and (c) magnitude of electron current is plotted
at the bias point of Vgs = 50mV and Vds = 1.0V.

amount electrons overcome thermal barrier and cause subthreshold
current flow as shown in Fig. 2.5(c).

Chapter 3

Mixed-mode Analysis

DD simulations described in Chapter 2 are performed on a single
isolated FinFET device by ramping up the contact voltages. In reality,
multiple such devices are connected to each other and to external
components which form system of components. The DD simulator can
perform coupled DD simulations on the FinFET devices coupled with
the circuits using the following command:
>> DDSolver systemsolver FinFETSys_dev.cfg

In the above command, the word after DDSolver is the name
of the program to be executed (in this case – systemsolver). The
program name is followed by the configuration file name (in this case –
FinFETSys_dev.cfg).

3.1 Config File
A sample configuration file of the DD Solver is provided below.

File: {
Out = "FinFET";

}

Device*MOS1:

21

22 CHAPTER 3. MIXED-MODE ANALYSIS

{
File: {

Device = "FinFET_str.cfg";
Out = "FinFET";

}

Contacts: {
gate: {Voltage = 0.0; WorkFunction = 4.8; Type = ["Insulator"]; }
source: {Voltage = 0.0; Type = ["Semiconductor"]; }
drain: {Voltage = 0.0; Type = ["Semiconductor"]; }

}

Physics: {
BandStructure: {

CarrierDistribution: { ApproximateFermi: []; }
}
Mobility: {

DopingDep: { Masetti: []; }
}
Recombination: {

SRHRecombination = ["DopingDep"];
}

}
}

System:
{

//SpiceCircuitFiles = ["SpCkt1.cir", "SpCkt2.cir"];
SpiceCircuit:

"
.subckt Amplifier Vc Vg Vout
R1 Vc Vout 100.
R2 Vs 0 10.
R3 Vg 0 4K
R4 Vc Vg 500.
W1 Vout Vg Vs MOS1
.ends

3.1. CONFIG FILE 23

Vsupply Vc 0 DC 0.0
X1 Vout1 Vin Vc Amplifier
X2 Vout Vout1 Vc Amplifier
R1 Vout 0 1K
.end
"

}

Math:
{

IterationsFC = 40;
InnerIterationsFC = 10;
IterationsSC = 40;
UndampedIterations = 0;
FCSolverTolerance = 1.;
SCSolverTolerance = 1.;
CircuitSolverTolerance = 1E-10;

SolverSettings = [
"InterpolateElecPotential",
"InterpolateElecFermi"
,"InterpolateHoleFermi"
];

}

Plot:
{

Quantities = ["ElectronDensity",
"AbsElectricField",
"ElectrostaticPotential",
"TotalRecombination",
"ElectronMobility",
"AbsElectronCurrent",
"AbsHoleCurrent"];

}

Solve:

24 CHAPTER 3. MIXED-MODE ANALYSIS

{
Static*Poisson: {

Coupled: ["Poisson", "Circuit"];
PlotTime = [0.];

}
Static*Poisson2: {

Coupled: ["Poisson", "Electron", "Circuit"];
PlotTime = [0.];

}

Quasistationary*SupplyVRamp:
{

initstep = 1E-3; minstep = 1E-5; maxstep = 0.1; incr = 1.35; decr = 2;
Ramp: {

Voltage*Vsupply = 1.0;
}
Coupled: ["Poisson", "Electron", "Circuit"]
PlotTime = [0., 0.05, 0.5, 1.0];

}

Quasistationary*InputVRamp:
{

initstep = 1E-3; minstep = 1E-5; maxstep = 0.1; incr = 1.35; decr = 2;
Ramp: {

Voltage*Vinput = 1.0;
}
Coupled: ["Poisson", "Electron", "Circuit"]
PlotTime = [0.,0.05, 0.5, 1.0];

}
}

The above config file can be used for simulating a system of two
inverter circuits made of FinFET devices. It has a similar composition
as that of the config file used for simulating single device in Chapter 2.
Additional keywords in the file and their functionality is described
below.

3.2. FILE SECTION 25

3.2 File section
Comparing the above config file with that in Chapter 2, one may notice
two file sections. The first file section belongs to the ‘system’ of devices.
Prefix of the output files of mixed-mode simulation is provided as an
argument out.

Notice another File subsection inside Device section in the above
file. It is specific to the device. Functionality of the Device section is
described below.

3.3 Device section
Notice a Device section named ‘Mos1’ in the above file. This section
specifies the device structure file (in File subsection), contact settings
(in Contacts subsection), and active physical models in the device
(in Physics subsection). Meaning of these subsections is the same as
described in Chapter 2. This Device section defines a FinFET named
‘MOS1’. This device may be referenced in the circuit file (or circuit
text) in System section by the keyword MOS1. In the circuit file, the
device instantiated in the same way as a sub-circuit with the same
number of output pins as the number of contacts of the device.

3.4 System section
The system section describes how various components of the circuit,
such as resistors, capacitors, or inductors together with the device (here
‘MOS1’) are connected to each other in the circuit. This connectivity
is set by a ‘Spice’ script provided with the argument SpiceCircuit,
as shown in the System section above. Or, it can be specified in circuit
file names (‘*.cir’), specified with the argument SpiceCircuitFiles
as a list of comma separated files.

3.5 Math section
Global math settings for the system solver are set in Math section of
the file. They have the same meaning as described in Sec 2.5. An

26 CHAPTER 3. MIXED-MODE ANALYSIS

additional argument CircuitSolverTolerance specifies the dividing
factor for the circuit solver residual.

3.6 Plot section
The argument Quantities specifies all the physical quantities stored
in the hdf5 file, similar to Sec 2.6.

3.7 Solve section
Solve section of the config file specifies which voltage/current sources
to be ramped to the specified value. Most of the arguments specified in
Solve section of the system simulation config file are similar to those
described in Sec 2.6. The additional arguments are described here.

The solve section can list one or many Static, Quasistationary,
or Transient ramps, which have the same meanings as described in
Sec 2.6. In system solve section, the coupled argument has an additional
keyword – Circuit. It specifies that the Circuit is coupled with other
equations, such as Poisson, Electron, or Hole continuity equations.

Also, notice that the Ramp subsection in the system config file does
not list the contact names to be ramped. Instead, it specifies voltage
to which the voltage source <vname> to be ramped, with the keyword
Voltage*<vname>.

3.8 Running mixed-mode simulations
The above config file is used to perform mixed-mode simulations
of an amplifier sub-circuit specified by the name Amplifier in the
SpiceCircuit text in System section. The DD system device is named
MOS1 and is represented by the same name in the spice circuit file as
shown in the line below.

W1 Vout Vg Vs MOS1

The device instance starting with the letter W is a DD system device
instance. It is followed by the net names connected to the contacts

3.8. RUNNING MIXED-MODE SIMULATIONS 27

of the DD device. It is followed by the device name MOS1. The DD
device is a FinFET whose structure shown in Fig. 2.1. The structure
is created using the command

>> DDSolver str FinFET_str.cfg.

Two Amplifier sub-circuit instances X1 and X2 are instantiated in
SpiceCircuit. These amplifier instances are connected back-to-back
in the main circuit. Thus, two instances of MOS1 are simulated
in mixed-mode simulation. The mixed-mode system simulation is
performed using the following command.

>> DDSolver systemsolver FinFETSys_dev.cfg.

Spatial distributions of various quantities at specific bias points are
stored in hdf files named ‘<out> <dev> <instname> <deviceid><ramp> -
<fileid> dd.h5’, where <out> is the prefix specified by Out, <dev> is
device name (here MOS1), <instname> is name of the circuit instance
(here ‘W1’), <deviceid> is a unique device id in the system, <ramp>
is ramp name, and <fileid> is bias point id. In this case, the files are
saved with the name ‘FinFET MOS1 W1 0GateRamp 0 dd.h5’. The
file can be opened using the following command.

>> paraview FinFET_MOS1_W1_0GateRamp_0_dd.xdmf

Currents and voltages at all the bias points are saved in a ‘csv’ file
named ‘<out> <deviceid> dev.csv’. They can be visualized using any
plotting tool, for example qtiplot.

Chapter 4

Small-signal Analysis

DD simulations can be performed on a single device to calculate
small-signal AC response of the device at a specific Direct Current
(DC) bias. This is done by first ramping up the contact voltages
quasi-stationarily to the given DC bias point. Then, Jacobian at the
DC bias is used to calculate AC response of the device.
>> DDSolver ddsolver FinFET_dev.cfg

4.1 AC Analysis Config File
A configuration file performs AC analysis when an ACAnalysis section
is presented.

File: {
Device = "FinFET_str.cfg";
Out = "FinFET";

}

Contacts: {
gate: {Voltage = 0.0; WorkFunction = 4.8; Type = ["Insulator"]; }
source: {Voltage = 0.0; Type = ["Semiconductor"]; }
drain: {Voltage = 0.0; Type = ["Semiconductor"]; }

}

29

30 CHAPTER 4. SMALL-SIGNAL ANALYSIS

Physics: {
BandStructure: {

CarrierDistribution: { ApproximateFermi: []; }
}
Mobility: {

DopingDep: { Masetti: []; }
}
Recombination: {

SRHRecombination = ["DopingDep"];
}

}

Math:
{

IterationsFC = 40;
InnerIterationsFC = 10;
IterationsSC = 40;
UndampedIterations = 0;
FCSolverTolerance = 1.;
SCSolverTolerance = 1.;

SolverSettings = [
"InterpolateElecPotential",
"InterpolateElecFermi"
,"InterpolateHoleFermi"
];

}

Plot:
{

Quantities = ["ElectronDensity",
"AbsElectricField",
"ElectrostaticPotential",
"TotalRecombination",
"AbsElectronCurrent"];

ACQuantities = ["ElectronDensity",
"AbsElectricField",

4.1. AC ANALYSIS CONFIG FILE 31

"ElectrostaticPotential"];
}

Solve:
{

Static*Poisson: {
Coupled: ["Poisson"];
Plot: { Time = [0.]; }

}

Quasistationary*Drain: {
initstep = 1E-3; minstep = 1E-5; maxstep = 0.1;
incr = 1.35; decr = 2;
Ramp: {

Voltage*drain = 1.;
}
Coupled: ["Poisson","Electron"]
PlotTime = [0., 0.5, 1.0];

}

Quasistationary*Gate: {
initstep = 1E-3; minstep = 1E-5; maxstep = 0.1;
incr = 1.35; decr = 2;
Ramp: {

Voltage*gate = 1.0;
}
Coupled: ["Poisson","Electron"]
PlotTime = [0., 0.05, 0.5, 1.0];
ACAnalysis: {

Nodes = ["gate", "source", "drain"];
Time = [0.99];
MinFrequency = 1E2; MaxFrequency = 1E6;
PointsPerDecade = 3;
PlotFrequency = [1E3, 1E6];

}
}

}

32 CHAPTER 4. SMALL-SIGNAL ANALYSIS

All the sections in the above config file have the same meaning as
described in Chapter 2. An addition subsection called ACAnalysis is
added in the last Quasistationary section ‘Gate’. This command is
described below.

4.2 ACAnalysis section
In small-signal analysis, admittance between every permutation of the
contact names listed in Nodes list is calculated at each frequency in
the frequency list. The frequency list is created by adding frequency
points from start frequency given by the argument MinFrequency
till end frequency specified by MaxFrequency. Number of points
per decade of frequency is set by the argument PointsPerDecade.
For calculating admittance, a unit amplitude AC voltage source is
connected to each of the contacts while setting other contacts to the AC
ground. Phasor currents from all the contacts are calculated for each
of the configurations, which give the admittances and the capacitances
between each pair of the contacts. This procedure is repeated on each
of the contacts by connecting AC voltage source to it and measuring
currents from all other contacts.

In the given example, the admittances (A) and the capacitances
(C) shown in the following matrix are calculated.∂Is

∂Ig
∂Id

 =

Ass Ags Ads
Asg Agg Adg
Asd Agd Add

 ·
∂Vs
∂Vg
∂Vd


+ iω ·

Css Cgs Cds
Csg Cgg Cdg
Csd Cgd Cdd

 ·
∂Vs
∂Vg
∂Vd

 (4.1)

4.3 Running small-signal analysis
The above config file is used to perform DD simulations of a 2D
FinFET structure shown in Fig. 2.1. The structure is created using
the command

4.3. RUNNING SMALL-SIGNAL ANALYSIS 33

>> DDSolver str FinFET_str.cfg.

The above command stores structure and mesh information in the
file named ‘FinFET str.h5’ and also writes ‘FinFET str.xdmf’ script
file for visualizing that mesh in paraview.
>> paraview FinFET_str.xdmf.

AC analysis is performed at the bias point at the fictional time
t > 0.99, i.e. at Vgs = 1.0V and Vds = 1.0V. The device config file can
be run by the following command.

>> DDSolver ddsolver FinFET_dev.cfg.

The simulator performs Quasistationary simulations till the
required bias point is reached. Jacobian at that bias point is used
to perform small-signal analysis on the device as explained above.
Admittances and capacitances are written in a csv file named ‘<out>
<rampname> <biasid> ac.csv’. The csv file can be imported in

any of the plotting tools such as qtiplot and frequency dependent
capacitances and admittances can be plotted. Opening the csv file in
a text editor will show the following lines,

0->Source
1->Gate
2->Drain
Frequency, A(0 0), C(0 0), A(0 1), C(0 1), A(0 2), C(0 2),...

First lines of the file show mapping of the contacts with their ids. The
line starting with Frequency lists the headers of the data. First column
corresponds to Frequency in Hz followed by admittance at contact 0
(here, Source) due to the small-signal voltage ∂Vs is applied at the same
contact 0. This is represented by A(0 0). Next column corresponds to
the capacitance C(0 0). The column after that corresponds to A(0 1):
the admittance between the Source and the Gate. All the column
headers are named in the same fashion.

Applying small-signal voltage ∂Vc at contact c results in small
variations in the spatial distribution of electron/hole density/Fermi
levels, electrostatic potential, etc. These small changes can have both
real and imaginary components (Note, that ∂Vc is always applied

34 CHAPTER 4. SMALL-SIGNAL ANALYSIS

with zero imaginary component). Real and imaginary components
of the spatial distributions of these quantities are stored at specific
frequencies given by PlotFrequency. They are stored in hdf files
named ‘<out> <rampname> ACFreqId <id> <cont> ac.h5’. Cor-
responding ‘xdmf’ files are also stored. They can be visualized in
paraview as follows.

>> paraview FinFET_Gate_ACFreqId_1_gate_dev.xdmf

Spatial distribution of real part of small-signal variations in electron
density arising from small-signal voltages (f = 1kHz) at the Source,
Gate, and Drain are shown in Fig. 4.1. Comparing the effect of AC
voltage at the source (Fig. 4.1(a)) and at the drain (Fig. 4.1(c)) shows,
that small variations in ∂Vd are confined to the drain. Due to the
channel pinch off at the channel-drain junction, the drain ‘electron
well’ is secluded from the rest of the device resulting in such an effect.

4.3. RUNNING SMALL-SIGNAL ANALYSIS 35

(a) Effect of small-signal voltage at source

(b) Effect of small-signal voltage at gate

(c) Effect of small-signal voltage at drain

Figure 4.1: Spatial small-signal variation of electron density because
of application of small-signal voltage at (a) source, (b) gate, and (c)
drain.

Chapter 5

Drift-diffusion Solver
Equations

Spatial distribution of free and fixed charges in semiconductor and
insulator regions of the devices satisfy Poisson equation together with
the boundary conditions at any given time. Similarly, electron and
hole concentration in the semiconductor regions must also satisfy the
carrier continuity equations together with the boundary conditions.
The DD simulator solves these three equations, Poisson equation,
electron continuity, and hole continuity equations together to deter-
mine electrostatic potential, electron, and hole concentrations. These
equations are described below.

5.1 Poisson equation
Poisson equation in the presence of free charges is given by,

−∇2Ψ(~r) = ρC(~r) + n(Ψ(~r))− p(Ψ(~r)) (5.1)

where ρC(~r) is net concentration of fixed charges which includes
dopants, bulk, and interface charges, and charged traps, p is the
hole concentration, and n is the electron concentration. Ψ(~r) is the
spatially varying electrostatic potential in the device. p and n show

37

38 CHAPTER 5. SOLVER EQUATIONS

strong non-linear dependence on the local electrostatic potential Ψ(~r).
Therefore, Eq. 5.1 is a non-linear equation of Ψ(~r). In DD simulator,
damped Newton’s method is used to solve this equation.

Electron (n(~r)) and hole (p(~r)) concentrations are calculated from
the Density of States (DOS) and the carrier Fermi energy level by
using one of the ‘Boltzmann’ equation, ‘Approximate Fermi’ equation,
or Fermi equation. The equations and underlying approximations are
described in detail in the next chapters.

Fixed charges (ρC(~r)) are created at any location in the bulk
material of the semiconductor by ionization of dopant atoms, charged
traps, and fixed charges originating from material defects.

The DD simulator reads net dopant concentration (ρD(~r)) from
the device structure and adds it to the total fixed charges at each
location. Thus, complete ionization is assumed in DD calculations.

Fixed charges originating from material defects are added to the
ρC(~r). Concentration of charged traps is calculated using the principle
of detailed balance and added to the ρC(~r).

Fixed charges and traps can also exist at the material interfaces.
The simulator calculates ‘sheet concentration’ of these charges, mul-
tiplies with the interface area and then adds to the total charge
concentration.

5.2 Carrier continuity equation
Carrier continuity equation implies, that under quasi-stationary condi-
tions, divergence of carrier current densities (~Jn(~r) and ~Jp(~r)) at any
spatial location equals carrier generation rate at that location. This is
given by,

∂n

∂t
= ∇ · ~Jn/q − (Rn −Gn) (5.2a)

∂p

∂t
= −∇ · ~Jp/q − (Rp −Gp) (5.2b)

(5.2c)

where, are electron and hole currents. Rn/p and Gn/p are recombina-
tion and generation rates of electrons/holes. Under quasi-stationary
conditions ∂n

∂t and ∂p
∂t are both zero. Note, that ~Jn/p as well as

5.3. COUPLED AND SELF-CONSISTENT SOLVER 39

Rn/p−Gn/p are nonlinear functions of Ψ, p, and n. Therefore, Eq. 5.2
form a system of nonlinear equations of the solution variables. In DD
simulator, damped Newton’s method is used to solve these equations.

In the case of transient ramps, the above system of equations must
be evolved using one of the time-stepping algorithms. In DD simulator,
Backward Euler (BE) method is implemented to solve time evolution
solutions of time-dependent Partial Differential Equation (PDE).

At any location ~r, electron and hole current (~Jn(~r) and ~Jp(~r)) arise
from drift of the carriers in the electric field (~E = ∇Ψ) and diffusion
of the carriers due to the concentration gradient (∇n and ∇p).

~Jn = n · q · µn · ∇Ψ−Dn∇n (5.3a)
~Jp = p · q · µp · ∇Ψ +Dp∇p (5.3b)

Here, Ψ is the electrostatic potential, Dn and Dp are electron and hole
diffusivities, µn and µp are mobilities, and q is electronic charge. Using
Einstein relation for carrier diffusivities (Dn/p ≈ µn/p · kTq) reduces
the above equation to,

~Jn = −n · q · µn · ∇Φn (5.4a)
~Jp = −p · q · µp · ∇Φp (5.4b)

Here, Φn/p are electron and hole Fermi energies. In DD simulator, the
carrier current densities obtained from the Einstein approximations
given by Eq. 5.4 are used in continuity Eq. 5.2. The continuity
equations are solved to obtain carrier concentrations and carrier Fermi
energies.

5.3 Coupled and self-consistent solver
In DD simulator, the above three equations – Poisson equation (Eq. 5.1),
electron continuity (Eq. 5.2a), and hole continuity (Eq. 5.2b) – are
solved simultaneously. All these equations are nonlinear in solution
variables Ψ, p, and n. Thus, solving continuity equation changes
electron and hole concentrations which necessitates solving Poisson
equation again. In a self-consistent solver, these equations are solved

40 CHAPTER 5. SOLVER EQUATIONS

one after the other repeatedly till convergence is reached (i.e. solu-
tions change little in subsequent iterations). Specifying the keywords
SelfConsistent: ["Poisson", "Electron"] in the ramp commands
in Solve section sets a self-consistent solver for Ψ and n.

Alternately, all the three equations can be solved as coupled
equations. A coupled solver is also provided in DD simulator. Spec-
ifying a Coupled keyword in the ramp command in Solve section
Coupled: ["Poisson", "Electron"] sets a coupled solver for Ψ and
n.

5.4 Domain Boundary Conditions
5.4.1 Mirror BC
Simulation of drift-diffusion equations within a finite simulation domain
activate zero flux BC at the domain boundary, by default. For Poisson
equation, they are given by Eq. 5.5.

∇Ψ(~r) · n̂ = ~F (~r) · n̂ = 0∀~r ∈ δΩ (5.5)

Similarly, for electron continuity equation, mirror BCs are given by
Eq. 5.6.

∇Φn(~r) · n̂ = ~Jn(~r) · n̂ = 0∀~r ∈ δΩ (5.6)

Also, for hole continuity equation, mirror BCs are given by Eq. 5.7.

∇Φp(~r) · n̂ = ~Jp(~r) · n̂ = 0∀~r ∈ δΩ (5.7)

Here, n̂ is unit normal at ~r along the domain boundary (δΩ).
When the simulation domain is continuous at the boundary, the

above BCs are equivalent to mirror BCs. Therefore, it is advised to
set the boundary of the simulation domain such that the device is
mirrored on the other side of the domain.

5.4.2 PBC
PBCs can be set at the extrema along X and Y axes in 2D device, and
X, Y and Z axes in 3D devices. Two types of periodic BCs are available
- Mortar and Robin PBC.

5.4. DOMAIN BOUNDARY CONDITIONS 41

Mortar PBC

In ‘mortar’ PBC, vertices at the extrema along the axes of PBC are
stitched together. If PBC is specified at Xmin, vertices along the domain
boundary at minimum of X are stitched to those at the maximum of
X. Alternately, if PBC is specified at Xmax, vertices along the domain
boundary at maximum of X are stitched to those at the minimum of X.
Thus, for each of the equations, PBCs are given by,

∀~rm ∈ Ω(xmin) and~rM ∈ Ω(xmax)
Ψ(~rm) = Ψ(~rM) (5.8)

Φn(~rm) = Φn(~rM) (5.9)
Φp(~rm) = Φp(~rM) (5.10)

(5.11)

Same procedure is applied for all vertices at the boundaries of Y
and (in 3D) forZ axes.

Robin PBC

In ‘robin’ PBC, vertices at the extrema along the axes of PBC are
coupled together. If PBC is specified at Xmin, vertices along the domain
boundary at minimum of X are coupled to those at the maximum of
X. Alternately, if PBC is specified at Xmax, vertices along the domain
boundary at maximum of X are coupled to those at the minimum of X.
Thus, PBCs for each of the equations are given by,

∀~rm ∈ Ω(xmin) and~rM ∈Ω(xmax)
α · (Ψ(~rm)−Ψ(~rM))− ~F (~rm) = 0 (5.12)

α · (Φn(~rm)− Φn(~rM))− ~Jn(~rm) = 0 (5.13)
α · (Φp(~rm)− Φp(~rM))− ~Jn(~rm) = 0 (5.14)

(5.15)

Here, α is an adjustable parameters. It can be set in device Math
section by the keyword RobinBCFactor. It is set to 1 by default.

42 CHAPTER 5. SOLVER EQUATIONS

5.4.3 Defining PBC
Following flag must be set in device Math section to activate periodic
BCs -

(Robin|Morter)PBCAt(X|Y|Z)(min|max)

Following examples show usage of the flag.

• RobinPBCAtXmin : Robin PBC along X axis at minimum x.

• RobinPBCAtYmax : Robin PBC along Y axis at maximum y.

• MorterPBCAtXmax : Mortar PBC along X axis at maximum x.

By default, each vertex at Xmin boundary is paired with the nearest
vertex at Xmax boundary. If the two vertices have identical y and z
coordinates, then this construction is accurate. Otherwise, it introduces
unphysical skewing of the device geometry at the boundary. In order to
avoid it, PBCUseVertexInterp flag is set in Math section. It binds the
solutions (Psi, Phin, and Phip) at the vertex at Xmin to the linearly
interpolated values of the respective solutions at Xmax. This avoids
unphysical skewing.

5.5 Electrical Boundary conditions
Boundary conditions of the above equations depend on what type of
electrical BC has been set at the device mesh boundary region.

5.5.1 Ohmic contacts
Semiconductor contacts are, by default, ohmic contacts. If they are
connected to an external circuit (e.h. mixed-mode simulations), then
the contact resistance of 10−3Ω is introduced by default. In case of
the contact voltage ramp, no contact resistance is introduced. Charge
neutrality is always assumed at Ohmic contacts.

n0 − p0 = ND,net (5.16a)
n0 × p0 = n2

i (5.16b)

5.5. ELECTRICAL BOUNDARY CONDITIONS 43

where n0 and p0 are equilibrium electron and hole concentrations,
ni is the intrinsic density, and ND,net is net doping concentration.
These conditions can be evaluated analytically for Boltzmann and
approximate Fermi statistics. These conditions allow us to specify
electrostatic potential (Ψ) and contact Fermi energy (φF,e/h) as a
function of doping and contact voltage. Contact electrostatic potential
is calculated for a given contact voltage VC as follows,

ψC = VC + kT

q
asinh

(
ND,net

2ni

)
(5.17a)

φF,e/h = VC (5.17b)

This boundary condition is used at Ohmic contacts while solving
Poisson and continuity equations.

If eRecVelocity (ve in cm/sec) and hRecVelocity (vh in cm/sec)
are specified in the contact definition in Electrode section, contact
Fermi is not determined by Eq. 5.17b. Instead the following BCs are
imposed at the contact.

~Jn · n̂ = qve(n− n0) (5.18a)
~Jp · n̂ = −qvh(p− p0) (5.18b)

The above equations are solved together with carrier continuity equa-
tion to determine contact Fermi energy.

5.5.2 Schottky contacts
A Semiconductor contact is specified as a Schottky contact by adding
an argument SchottkyBarrier together with Schottky barrier value
(ΨB) at the contact. At the Schottky contact, the following BCs
imposed.

ψC = VC −ΨB + kT

q
ln
(
NC
ni

)
(5.19a)

~Jn · n̂ = qve(n− nB) (5.19b)
~Jp · n̂ = −qvh(p− pB) (5.19c)

nB = NC exp
(
−qΨB

kT

)
(5.19d)

44 CHAPTER 5. SOLVER EQUATIONS

pB = NV exp
(
−Eg + qΨB

kT

)
(5.19e)

where VC is the contact voltage, ve and vh are e and h thermionic
emission velocities, NC and NV CB and VB DOS. Thermionic emis-
sion velocities ve and vh are set to, respectively, 2.5 × 106cm/sec
and 1.9 × 106cm/sec, by default. They can be modified by speci-
fying eRecVelocity and hRecVelocity in the contact definition in
Electrode section.

5.5.3 Contact Resistances
When a contact is connected to an external circuit, a contact resistance
of 10−3Ω is introduced, by default. Alternately, a contact resistance (in
Ohms) may be specified in the contact definition using the argument
Resistance. Such resistive contact may be viewed as having an
external node and an internal node. Contact resistance is connected
between the two. User specified contact voltage is applied at the
external node. Voltage on the internal node is determined by solving
the equation,

VC − φC
RC

= IC(ΦC) (5.20)

Note, that total current passing through the contact IC depends on
voltage on the internal node (φC). The above equation is coupled with
the continuity equations and solved to determined φC .

5.6 Nonlinear solver
DD simulator solves Poisson equation (Eq. 5.1), electron, and hole
continuity equations (Eq. 5.2a and Eq. 5.2a) to obtain electrostatic
potential, and e and h densities. Since the equations are nonlinear
in solution variables, they need to be solved using a nonlinear solver,
such as Newton’s solver. The DD simulator uses a damped Newton’s
solver reported in Bank et al.

In this solver, a nonlinear system of equations ~f(~x) = 0 is solved
by Newton’s method. It involves calculating Jacobian matrix (g′(~xi))

5.6. NONLINEAR SOLVER 45

at a current step i, and solve the following equation to get solution
update (~dxi) for the next step, i+ 1.

g′(~xi) · ~dxi = −g(~xi) (5.21a)
~xi+1 = ~xi + γ ~dxi (5.21b)

Here, γ is the damping parameter calculated such that ‖g(~xi+1)‖
‖g(~xi)‖ < 1

and ‖g(~xi+1)‖
‖g(~xi)‖ is as close to unity as possible.

5.6.1 Available Linear Solvers
Linear matrix equation (Eq. 5.21a) in the above described Newton’s
method can solved by any of the following matrix solvers.

• Pardiso : This solver is provided with Intel math kernel libraries
(MKL). It can offer simulation speed-up on Intel processors
compared to the other solvers. It is used by default, when the
DD solver version with mkl acceleration is installed. Note, that
Pardiso solver cannot be selected in the DD solver without mkl
acceleration.

• SuperLU : This solver is provided with SuperLU package. It is
the default solver, when the DD solver without mkl acceleration
is installed. It can be activated by adding SuperLUSolver flag
to the Settings in Math section of the config file.

• ILS : An iterative linear solver based on GMRES method can
be selected. It uses Incomplete LUT preconditioner. It can be
activated by adding ILSMethod flag to the Settings in Math
section of the config file.

If the iterative solver is selected by specifying ILSMethod flag, then
the following parameters can be used to configure ‘GMRES’ method
together with the preconditioner based on ‘incomplete LU’.

• ILSMaxIter : It sets maximum iterations performed in GMRES
method.

• ILSRestartIter : It specifies iterations after which GMRES
reset is performed.

46 CHAPTER 5. SOLVER EQUATIONS

• ILSGMRESTol : It sets solver tolerance in GMRES method.

• ILSPrecondDropTol : It specifies ‘drop-tolerance’ of the ILUT
method. If the matrix entry is less than the tolerance value then
it is ignored.

• ILSPrecondDropTol : It specifies fill-factor in the incomplete
LU method.

5.6.2 Convergence criterion
Nonlinear iterations as described in the Damped-Newton algorithm
continue until convergence criterion is reached. By default, when
the norm of the residual ‖g(~xi)‖ < 1.0, the Newton’s iterations exit.
If RelativeError is specified in SolverSettings in Math section,
then relative error criterion is used for convergence check. At each
step, relative error is calculated by subtracting previous solution from
the current solution and dividing it by the current solution. It is
represented as follows.

1
εR

1
N

∑
eq,n

|x(eq, n, i)− x(eq, n, i− 1)|
|x(eq, n, i)|+ εref (eq) < 1 (5.22)

Here, N is the number of nodes, eq is the equation (Poisson, e
or h continuity), i is Newton’s step. εR is the relative error set
by argument RelativeError, εref (eq) is equation-wise relative error
criterion, set by RelativeErrorElectron, RelativeErrorHole, and
RelativeErrorPoisson for e, h continuity, and Poisson equation,
respectively.

Chapter 6

Band-structure models

Physical quantities related to band-structure of the semiconductor
material are described in this chapter. Their parameterization in the
material config file of the DD simulator is also explained. Note, that
all the models and their parameters are listed in BandStructure part
of the material file.

6.1 Band-gap
Energetic separation of lowest energy state of the CB and the highest
energy state of the VB is the band gap of the semiconductor. It is set
in BandGap section by the argument Eg0 together with the temperature
T0 at which the band gap has been measured.

Temperature dependence of the band gap is modeled by Varshney’s
relation as follows.

Eg(T) = Eg(T0) + αT 2
0

T0 + β
− αT 2

T + β
− Ebgn (6.1)

Here, T is the lattice temperature, and T0 is the temperature at which
Eg(T0) has been measured. Also, α and β are Varshney parameters
set in BandGap section by the arguments alpha and beta respectively.
Ebgn is the band gap narrowing in heavily doped semiconductor.

47

48 CHAPTER 6. BAND-STRUCTURE

6.1.1 Band-gap Narrowing
Heavy doping in the semiconductor results in reduction of the band
gap. This band-gap narrowing (Ebgn) depends on the doping levels in
the semiconductor. Various models have been reported in the literature
to model this effect. They have been listed below along with the fitting
parameters.

Bennett-Wilson model

In BennetWilson model, the band-gap narrowing is modeled as follows.

Ebgn =

Eref
[
ln
(
Ntot

Nref

)]2
if Ntot ≥ Nref

0 otherwise
(6.2)

The parameters, Eref and Nref are listed under BennetWilson section
in BandStructure part of the material file.

delAlamo model

In DelAlamo model, the band-gap narrowing is modeled as follows.

Ebgn =
{
Eref · ln

(
Ntot

Nref

)
if Ntot ≥ Nref

0 otherwise
(6.3)

The parameters, Eref and Nref are listed under DelAlamo section in
BandStructure part of the material file.

Slotboom model

In Slotboom model, the band-gap narrowing is modeled as follows.

Ebgn = Eref ·

ln
(
Ntot
Nref

)
+

√(
ln
(
Ntot
Nref

))2
+ 0.5

 (6.4)

The parameters, Eref and Nref are listed under Slotboom section in
BandStructure part of the material file.

6.2. CARRIER DISTRIBUTION 49

6.1.2 Electron affinity
Energetic separation between the CB edge and the vacuum energy
level is called electron affinity χ of the material. Its temperature
dependence is modeled by the following expression.

χ(T) = χ0 + (α+ α2)T 2

2(T + β + β2) + γbgn · Ebgn (6.5)

Here, χ0 is set by Chi0, α, β are Varshney parameters, and α2, β2 are
additional parameters to fit temperature dependence of χ(T). The
parameters α2, β2 are set by the arguments alpha2 and beta2 in
BandGap section.

Band-gap-narrowing lowers CB energy and increases VB energy.
γbgn is a fraction of band-gap-narrowing by which CB energy is lowered.
It is set by BgnToChi argument in BandGap section.

6.2 Carrier distribution
Energetic distribution of electrons and holes follows Fermi-Dirac
formula as follows.

n(~r) = NCF1/2

(
q(φn − EC)

kT

)
(6.6a)

p(~r) = NV F1/2

(
q(EV − φp)

kT

)
(6.6b)

where NC and NV are the CB and VB DOS values, EC and EV are
local CB edge and VB edge energies. F1/2(η) is Fermi-Dirac integral
given below.

F1/2(η) =
∫ ∞
ε=0

ε1/2

1 + exp (ε− η)dε (6.7)

The above integral has no closed form solution. In DD simulations, it
is often required to calculate carrier density from Fermi energy and
vice versa. A closed form solution of the above integral would highly
speed up the computation. For that purpose, the above integral is
typically approximated to analytic expressions. The following two
approximations can be selected for DD simulations.

50 CHAPTER 6. BAND-STRUCTURE

6.2.1 Boltzmann approximation
By default, Boltzmann approximation is applied in DD simulations.
In Boltzmann approximation, Fermi-Dirac integral is analytically
expressed as follows,

F1/2(η) = exp η (6.8)

Boltzmann distribution is fairly accurate if the carrier Fermi energy
φn/p lies in the band-gap of the semiconductor. Accuracy of this
approximation is low in the heavily doped areas of the device. In
practice, the above approximation gives a good description of device
characteristics with low computational burden.

6.2.2 Approximate Fermi
In approximate Fermi approximation, electron and hole density is
calculated as follows.

F1/2(η) = 1
exp−η + 0.27 (6.9)

Approximate Fermi distribution can be selected by specifying ApproximateFermi
argument in CarrierDistribution part of ‘global’ Physics section
as follows.

Physics: {
BandStructure: {
CarrierDistribution: { ApproximateFermi: []; }
}
}

Approximate Fermi distribution can only be activated in the global
physics section. It cannot be set in region/material physics section.

6.2.3 Density of States
The DOS factor appearing in Eq. 6.6 is given by,

NC/V = 2
(

2πmdos
C/V kBT

~2

)3/2

(6.10)

6.2. CARRIER DISTRIBUTION 51

whereas, intrinsic carrier concentration is given by

n2
i = NC ·NV · exp

(
−qEg
kT

)
(6.11)

Chapter 7

Mobility models

Electron and hole mobility in semiconductor materials is affected by
various external factors such as temperature, electric field, presence of
defects, etc. These effects can be included while simulating devices in
the DD simulator. In this chapter, available mobility models available
in the the DD simulator are described together with the parameters.

All the mobility model parameters are set in Mobility part of the
material config file.

7.1 Bulk mobility
Carrier mobility in the bulk of a low-doped semiconductor is affected by
phonon scattering. Since phonon scattering increases with temperature,
bulk mobility degrades with temperature. This is modeled by the
following empirical relation.

µb = µmax

(
T

T0

)−α
(7.1)

Here, µmax is mobility of the low-doped semiconductor measured at
temperature T0, T is the operating temperature, and α is a constant
determined from the measurements. All the above parameters can
be set in ConstantMob section of material config file. The parameter
values are different for electron and hole mobilties. Separate parameter

53

54 CHAPTER 7. MOBILITY MODELS

Table 7.1: Bulk mobility model parameters and their values
Symbol Parameter Electrons Holes Unit
µmax mumax 1450.0 450.0 cm2/Vs
α alpha 1.4 1.4 –

values are specified in the config file for electron and holes. The
parameter names and their default values are listed in Table 7.1.

Note, that bulk mobility model is always active in DD simulations.

7.2 Doping dependence
Bulk mobility degradation is observed in doped semiconductors. This
can be attributed to higher ionized impurity scattering in high doped
regions. It has been modeled empirically by various research groups.
An empirical model by Masetti et al is currently available in the
DD simulator to model mobility degradation. It can be activated
by specifying Masetti argument in the DopingDep part of Mobility
section in global, material, or region-wise physics section as follows.

Physics: {
Mobility: {

DopingDep: { Masetti: []; }
}
...

}

7.2.1 Masetti model
In the model proposed by Masetti, electron and hole mobility in the
doped semiconductor is given by the following expression.

µb = µmin1 · exp
(
− Pc
ND

)
+ µb − µmin2

1 + (ND

Cr
)α
− µ1

1 + (Cs

ND
)β

(7.2)

The parameters µmin1, µmin2, and µ1 are mobility parameters, while
µb is the bulk mobility in Eq 7.1. The mobility parameters, the doping

7.3. MOBILITY DEGRADATION IN THE CHANNEL 55

Table 7.2: Doping dependent mobility model parameters and their
values

Symbol Parameter Electrons Holes Unit
µmin1 mumin1 52.2 44.9 cm2/Vs
µmin2 mumin2 52.2 0. cm2/Vs
µ1 mu1 43.4 29.0 cm2/Vs
Pc Pc 0 9.23× 1016 cm−3

Cr Cr 9.68× 1016 2.23× 1017 cm−3

Cs Cs 3.43× 1020 6.1× 1020 cm−3

α alpha 0.68 0.19 –
β beta 2.0 2.0 –

parameters Pc, Cr, Cs and the exponents α, β are set in Masetti
section in the material config file. The parameter names and their
default values are listed in Table 7.2.

7.3 Mobility degradation in the channel
In a Metal-Oxide Semiconductor Field Effect Transistor (MOSFET),
carrier mobility at insulator-semiconductor interface degrades due to
various factors including field-induced quantum confinement, interface
roughness, phonon scattering. Various semi-empirical or empirical
models have been proposed in the literature to model this effect. In
DD simulator, a model proposed by Lombardi et al [] is available to
model mobility degradation at insulator-semiconductor interface. It
can be activated by using the following syntax.

Physics: {
Mobility: {

FieldDep: { Lombardi: [];}
...

}
...

}

56 CHAPTER 7. MOBILITY MODELS

7.3.1 Lombardi model
Contribution of surface acoustic phonons to the mobility (µac) is
accounted by the following expression.

µac = B

F⊥
+
C
(
ND+N2
N0

)λ
F

1/3
⊥
(

T
300.0

)k (7.3)

Here, F⊥ is local electric field along the direction normal to the nearest
insulator/semiconductor interface, B and C are the fitting parameters,
N0 and N2 are reference doping parameters, λ and k are the exponents.

Similarly, contribution of surface roughness scattering to the mo-
bility (µsr) is given by,

µsr =
(

(F⊥
Fref

)A∗

δ
+ F 3

⊥
η

)−1

(7.4)

where, Fref = 1V/cm is the reference field parameter, δ and η are
fitting parameters of the model, F⊥ carries the same meaning as in
Eq. 7.3.

The above two mobility contributions are combined with the bulk
mobility µb calculated using Eq. 7.2 using Mattheisen’s rule to obtain
total low-field mobility.

1
µlow

= 1
µb

+ exp (− d

lcrit
)
(

1
µac

+ 1
µsr

)
(7.5)

Here, d is the distance from the nearest semiconductor/insulator
interface and lcrit is a fitting parameter. The factor exp (− d

lcrit
) allows

smooth transition from mobility degradation model at the interface to
the bulk mobility.

The exponent A∗ in Eq. 7.4 is given by the following expression.

A∗ = A+ α⊥(n+ p)
(ND+N1

Nref
)ν

(7.6)

Parameter names in Eq. 7.3, Eq. 7.4, and Eq. 7.6 and their default
values are listed in Table 7.3.

7.3. MOBILITY DEGRADATION IN THE CHANNEL 57

Table 7.3: Parameters for Lombard mobility degradation model and
their default values

Symbol Parameter Electrons Holes Unit
B B 4.75× 107 9.925× 106 cm/s
C C 5.8× 102 2.947× 103 cm5/3V−2/3s−1

N0 N0 1 1 cm−3

N1 N1 1 1 cm−3

N2 N2 1 1 cm−3

λ lambda 0.125 0.0317 –
k k 1 1 –
δ delta 5.82× 1014 2.0546× 1014 cm2/Vs
A A 2 2 cm2/Vs
α⊥ alpha 0 0 cm3

ν nu 1 1 –
η eta 5.82× 1030 2.0546× 1030 V2cm−1s−1

lcrit lcrit 10−6 10−6 cm

58 CHAPTER 7. MOBILITY MODELS

7.4 High field saturation
Presence of high electric field in the carrier transport direction increases
probability of phonon scattering which degrades carrier mobility. Thus,
carrier drift velocity is not a linear function of electric field (~vdrift 6= µ~F).
This can be modeled by defining field dependent mobility, such that the
linear relationship between ~vd and ~E is reestablished (~vdrift = µ(~F)~F).
Field dependent mobility model proposed by Canali et al is available
in DD simulator to model this behavior at high electric fields. It can
be activated as follows.

Physics: {
Mobility: {

HighFieldSat: { Canali = []; }
...

}
...

}

7.4.1 Canali model
Canali model takes mobility µlow at low electric field and updates it
to model mobility degradation at high field. Mobility at high electric
field parallel to the transport direction F‖ is expressed as follows.

µ(F‖) = (α+ 1)µlow

α+
[
1 +

(
(α+1)µlowF‖

vsat

)β]1/β (7.7)

Here,α is a fitting parameter that can be anywhere between 0 to 1.
When α = 1, Haensch [?] model is activated. The exponent β is
temperature dependent and is given by the expression below.

β = β0

(
T

300.0

)βexp

(7.8)

Similarly, saturation velocity vsat in Eq. 7.7 is given below.

vsat = vsat0

(
T

300.0

)vsatexp

(7.9)

7.4. HIGH FIELD SATURATION 59

By default, electric field parallel to the transport direction F‖ is
calculated by projecting vector electric field ~F on the carrier transport
direction.

F‖ = ~F ·
~Jn/p

| ~Jn/p|
(7.10)

If EParallel is set to GradQuasiFermi in HighFieldSat section, then
gradient of quasi Fermi level ∇φn/p is used to calculate F‖.

F‖ =
∣∣∇φn/p∣∣ (7.11)

Note, that µlow in Eq. 7.7 combines all active mobility models (e.g.
bulk mobility, doping dependence, normal field dependence, etc.) in
the low field using Mattheisen’s rule.

Chapter 8

Effect of mechanical
stress

Semiconductor devices are subject to mechanical stress arising from the
soldering, packaging, or fabrication processes. Mechanical stress results
in deformation of the crystal-lattice, which changes lattice constant
as well as semiconductor band-structure. The CB and VB edges are
shifted. This causes wide range of changes in the material and the
device data, such as threshold voltage, mobility, etc. Modeling the
effects of mechanical stress on the semiconductor device characteristics
is described below.

8.1 Stress-strain modeling

Applied stress on the semiconductor device deforms the crystal and
introduces strain in it. This in-turn affects band-structure of the
semiconductor. If the device-stress is provided as an input, strain is
calculated using the following equation.

~ε = C · ~σ (8.1)

61

62 CHAPTER 8. STRESS EFFECT

Here, strain-tensor and stress-tensor are written in ‘engineering nota-
tion’ as follows.

~εT =
[
εxx εyy εzz εyz εxz εxy

]
(8.2)

~σT =
[
σxx σyy σzz σyz σxz σxy

]
(8.3)

A strain tensor, when represented in full matrix form, is given
below.

ε =

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 (8.4)

However, for stress-strain calculations, engineering format is used.
The compliance matrix (C) is a 6× 6 matrix which defines relation-

ship between stress and strain. Compliance matrix for a cubic crystal
symmetry is given below.

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(8.5)

Values of the material parameters S11, S12, S44 are provided in
ComplianceMat section of MaterialProp part of material config file
with the keywords S11, S12, and S44, respectively. Their unit is
“cm2/dyne” (1 m2/Pa = 10 cm2/dyne).

Note, that conventionally compressive strain is negative and tensile
strain is positive. This convention is also followed in DD solver.

Values of device-stress or device-strain are specified by the user
in engineering format as a list of 6 numbers in the Physics section.
If stress is provided, strain is calculated from stress using Eq. 8.1.
Alternately, user can provide device-strain directly. Stress/strain is
defined in global, material-wise, or region-wise Physics sections in
StressEffects part in the DD solver config file as follows.

8.2. BAND-EDGE SHIFT 63

StressEffects:
{

DeformationPotModel = ["BandMin"]
Stress = [0,0,0,0,0,0]
Strain = [0,0,0,0,0,0]
CrystalX = [1,0,0]
CrystalY = [0,1,0]

}

As shown above, the user-provided constant stress(strain) is specified
with Stress(Strain) as a list of 6 components in engineering notation
(see Eq. 8.3 or 8.2). If the device coordinate system (in which
stress/strain is defined) is different from the crystal coordinates, then
X- and Y- axes of the crystal in device coordinate system can be
specified with the keywords CrystalX and CrystalY.

8.2 Band-edge shift

8.2.1 CB-edge shift
Silicon has six CB valleys - three on the positive side of each major
axis (∆x,∆y,∆z) and the other three on the negative side in the
reciprocal-lattice space. All these CB valleys are degenerate (i.e. they
have the same energy minimum). Applying compressive stress increases
energy of the valley-minima, while tensile stress decreases it. Applying
anisotropic stress shifts different valleys by different energy, due to
symmetry reason. This energy shift per valley in the case of Silicon is
given by.

∆EC,i = Ξd · (εxx + εyy + εzz) + Ξu · εii · · ·where i = x, y, z (8.6)

Here, Ξd, Ξu are CB deformation potentials and ∆EC,i is energy shift
of the valley at i = x, y, z. Due to symmetry reasons, shear components
of strain (i.e. εyz, εxz, εxy) do not affect CB energy shift (at least in
first order approximation).

The parameters Ξd and Ξu are defined in StressEffect section of
the BandStructure part of the material config file. They are specified
with the keyword Xu and Xd, respectively.

64 CHAPTER 8. STRESS EFFECT

After calculating the CB edge shifts for all the valleys, CB edge
is obtained as follows. If the keyword BandMin is specified with
the argument DeformationPotModel, then CB edge is set by adding
minimum of all the CB edge shifts to it.

EC,strained = EC,relaxed + min
i

∆EC,i (8.7)

If no keyword is specified, then average CB edge shift is obtained by
the following equation.

∆EC = − log (1
N

N∑
i

exp (−∆EC,i

kT
)) (8.8)

The above equation performs a ‘weighted average’ of CB valley shifts
with electron concentration in each valley as ‘weighing factor’.

8.2.2 VB-edge shift
VB maximum of Silicon is doubly degenerate, with two bands - Light
Hole (LH) and Heavy Hole (HH) band - having the energy maxima at
the Γ-point in the reciprocal-lattice space. Similar to the CB, applying
compressive stress increases energy of the valley-maxima, while tensile
stress decreases it. Due to the symmetry properties of the LH and HH
bands, application of strain energetically separates LH and HH bands
and breaks degeneracy of the VB maxima. LH and HH energy shifts
are derived from k.p theory without considering spin-orbit split-off
band. They are given by.

∆EV,hh =a · (εxx + εyy + εzz) + δE (8.9)
∆EV,lh =a · (εxx + εyy + εzz)− δE (8.10)

δE =
√
b2

2 ((εxx − εyy)2 + (εyy − εzz)2 + (εzz − εxx)2) + d2(ε2xy + ε2yz + ε2xz)
(8.11)

Here, a, b, and d are k.p parameters. If ∆so (EV,hh/lh − Eso) is small
enough to not neglect it, then the 3 band k.p equation is solved at
Γ-point to obtain energy shifts of all the bands.

8.3. MOBILITY MODIFICATION 65

The parameters a, b and d are defined in StressEffect section of
the BandStructure part of the material config file. They are specified
with the keywords akp, bkp, and dkp, respectively.

After calculating the VB edge shifts for all the bands, VB edge is
obtained as follows. If the keyword BandMin is specified with the
argument DeformationPotModel, then VB edge is set by adding
maximum of all the VB edge shifts to it.

EV,strained = EV,relaxed + min
i=lh,hh,so

∆EV,i (8.12)

If no keyword is specified, then average VB edge shift is obtained by
the following equation.

∆EV = log (1
3

∑
i=lh,hh,so

exp (∆EV,i

kT
)) (8.13)

Similar to the CB edge, the above equation performs a ‘weighted
average’ of VB valley shifts with hole concentration in each valley as
‘weighing factor’.

8.3 Mobility modification
Net e/h mobility is a weighted average of e/h mobility in each of the
CB/VB valleys, weighted by the e/h occupancy of that valley.

Application of strain breaks degeneracy of both CB and VB of
Silicon. As a result, electron/hole re-population takes place. For
example, electrons populate all the six CB valleys equally in relaxed Si.
In strained Silicon, more electrons occupy the CB valley(s) with lower
energy. As a result, net µe changes on application of strain. This is
accounted in the DD simulations by modifying the mobility scaling
factor (µr).

Each of the CB valleys has an ellipsoid shape, which results in
effective mass anisotropy. This in-turn results in anisotropic µr.
Anisotropic µr for each of the Silicon CB valleys is given below.

µr,x =

mc/ml 0 0
0 mc/mt 0
0 0 mc/mt

 := diag(mc/ml,mc/mt,mc/mt)

(8.14)

66 CHAPTER 8. STRESS EFFECT

µr,y =diag(mc/mt,mc/ml,mc/mt) (8.15)
µr,z =diag(mc/mt,mc/mt,mc/ml) (8.16)

Here, 1
mc

= 2
mt

+ 1
ml

is the average electron effective mass in relaxed
Silicon.

An average µr,avg is obtained from µr of all the valleys using the
following equation.

µr,avg =
∑
i µr,i · exp (−∆EC,i/kT)∑

i exp (−∆EC,i/kT) (8.17)

Scalar mobility enhancement factor (µr), which scales mobility, is
obtained from Ref. 8.14 and electron current direction (Ĵn = ~Jn

| ~Jn|
) at

each vertex in the device as follows.

µr(~r) = Ĵn(~r)T · µr,avg · Ĵn(~r) (8.18)

At each vertex in the device, mobility is scaled by the above factor
µr(~r). In this way, electron mobility modification due to electron
re-population is accounted in DD simulations.

In the similar fashion, hole mobility scaling factor is calculated by
performing weighted averaging over LH, HH, and spin-orbit bands.
Note, that effective masses and thus mobility of the hole bands is
assumed to be isotropic.

Electron longitudinal and transverse effective mass values ml and
mt are defined in StressEffect section of the BandStructure part
of the material config file. They are specified with the keywords mc_l,
mc_t. Similarly, effective masses of LH, HH, and spin-orbit bands are
specified in the same section with the keywords mv_lh, mv_hh, and
mv_so, respectively.

Note: Strain-induced modification of the effective mass is not
accounted for in the above model.

Chapter 9

Generation-
Recombination
models

Electron and hole continuity equations (Eq. 5.4) includes net recombi-
nation rates of the carriers. Total generation rate of all the generation
processes is subtracted from the total recombination rate of of all the
recombination processes to calculate net recombination rate of the
carriers. This chapter explains all the generation and recombination
processes that can be activated in the DD simulator.

9.1 Shockly-Read-Hall recombination
Schockley-Read-Hall (SRH) recombination takes place by capture of
an electron from the CB by a defect level and its subsequent emission
to the VB resulting in annihilation of a hole. Similarly, generation
takes place when an electron can be captured by the defect level from
the VB creating a hole in the VB. It is subsequently emitted to the
CB. Both the above processes can be activated in DD simulations as
follows.

Physics: {

67

68 CHAPTER 9. GEN-REC MODELS

Recombination: {
SRHRecombination = ["DopingDep"];

}
}

Recombination rate due to SRH process is calculated by using the
following equations.

Rsrh = n · p− n2
i

(n+ n1) · τp + (p+ p1) · τn
(9.1a)

n1 = ni · exp
(
qEtrap

kT

)
(9.1b)

p1 = ni · exp
(
−qEtrap

kT

)
(9.1c)

(9.1d)

In the above equations, n and p are electron and hole densities, ni
is intrinsic carrier density, Etrap is the dominant trap energy level in
the semiconductor (measured from the mid-gap, positive value shifts
trap levels towards the CB), kTq is the thermal voltage, τp and τn are
electron and hole life-times (in sec).

9.1.1 Carrier lifetimes
Electron and hole lifetimes (τn/p) depend on various external factors.

Doping dependence

In DD simulator, e/h lifetime dependence on doping concentration is
modeled by the following expression.

τn/p = τmin,n/p +
τmax,n/p − τmin,n/p

1 +
(

ND

Nref,n/p

)γn/p
(9.2)

Here, τmin,n/p, τmax,n/p are fitted parameters of carrier lifetimes, ND is
net doping concentration, and Nref,n/p is reference doping parameter.
Doping dependence can be activated by specifying DopingDep keyword
in SRHRecombination keyword list.

9.2. BAND-TO-BAND GENERATION 69

Table 9.1: SRH Scharfetter model parameters and their values
Symbol Parameter Electrons Holes Unit
τmax taumax 10−6 10−6 sec
τmin taumin 10−9 10−9 sec
Nref Nref 1016 1016 cm3

γ Gamma 1.0 1.0 –
Etrap Etrap 0.0 eV

Parameters are defined in SRHRecombination section of the Recombination
part of the material config file. Separate parameters for electrons and
holes are defined by using lists as described in Section ??. Mole
fraction dependence of the parameters can be modeled as described in
Section 2.8.1. Default values of the above parameters are provided in
Table 9.1

9.2 Band-to-band generation

In the presence of high electric field, electrons undergo tunneling from
the VB states to the CB states. This generates an electron-hole pair
in the semiconductor. This is called Band-to-band Tunneling (BTBT)
process. It can be activated in DD simulations as follows.

Physics: {
Recombination: {

Band2BandGen = [];
}

}

The expression for Band-to-band generation rate can be evaluated
analytically for a homogeneous semiconductor subject to a constant
electric field. Different theoretical analyses lead to slightly different
powers of the electric field. Generation rate due to BTBT process can

70 CHAPTER 9. GEN-REC MODELS

Table 9.2: Band-to-band generation model parameters and their values
Symbol Parameter Values Unit
A1 A1 10−6 sec
A1p5 A1p5 10−9 sec
A2 A2 1016 cm3

B B 1.0 –
Model type ModelType 2 –

be modeled in the DD simulator by selecting any one of the following
expressions.

Gbtb =


A1 · |F | · exp

(
− B
|F |

)
. . . model = 2

A1p5 · |F |1.5 · exp
(
− B
|F |

)
. . . model = 3

A2 · |F |2 · exp
(
− B
|F |

)
. . . model = 4

(9.3)

Here, A1, A1p5, A2, B are fitting parameters of the models. |F | is the
magnitude of electric field.

Parameters in Eq. 9.3 are defined in BandToBandGen section of the
Recombination part of the material config file. Their default values
are provided in Table 9.2. The parameter ModelType specifies which
of the models in Eq. 9.3 is used for BTBT rate.

9.3 Fowler-Nordheim tunneling
High electric-field perpendicular to the channel creates a triangular
barrier in the oxide normal to the channel direction. The ”tunnel
length” is small at the top of the triangular barrier leading to tunneling
few high energy electrons from CB of Silicon to the oxide. If the very
high oxide electric field is arising from high positive gate-voltage,
tunnelled electrons are transported to the nearby poly-gate. If the
high oxide field is arising from high negative gate-voltage, electrons are
tunnelled from the gate-poly into Silicon channel. Both these physical
phenomena generate gate current flow away from the gate or to the
gate, respectively. This process is called ”Fowler-Nordheim” tunneling.

9.3. FOWLER-NORDHEIM TUNNELING 71

If the poly-gate is connected to the external contact, this gate
current flows through the external circuit. If the poly-gate is a floating
gate, these electrons are ”trapped” into the gate causing charge pile-up
in the gate lowering its electrostatic potential. This mechanism is used
in flash memory devices to store the logic ‘1’ (electrons are trapped in
the floating poly-gate) or ‘0’ (electrons are not trapped). Applying a
high positive gate voltage is called the ‘write’ step, whereas applying
a high negative gate voltage to flush out electrons from the floating
gate is called the ‘read’ step.

This tunneling is modeled in the DD Solver by a general equation
given by Eq. 9.4.

Gsurf
fn (~r) = sign(~F⊥~r) · γ ·A · exp (− B

|~F (~r) · n̂surf |
) (9.4)

Here, Gsurf
fn is electron generation rate at the Semiconductor/oxide

interface. ~F⊥(~r) is electric field along the interface normal (~F (~r) ·
n̂surf) pointing towards oxide region. sign(x) is a sign function. The
parameters A and B are defined as follows.

A(~r) =
{
Awr . . . ~F⊥(~r) < 0
Aer . . . otherwise

(9.5)

B(~r) =
{
Bwr . . . ~F⊥(~r) < 0
Ber . . . otherwise

(9.6)

These parameters are defined in Fowler section of the Recombination
part of the material config file. Their default values are provided in
Table 9.3.

Generation rate given by Eq. 9.4 is added to the total electron
surface generation rate at ~r.

Fowler-Nordheim tunneling is activated using the following syntax.

Physics*Material*Silicon/Oxide: {
Recombination: {

Fowler = [HoleTun];
}

}

72 CHAPTER 9. GEN-REC MODELS

Table 9.3: Fowler-Nordheim model parameters and their values
Symbol Parameter Values Unit
Awr Awrite 10−6 1/V2

Aer Aerase 10−9 1/V2

Bwr Bwrite 10−6 V/cm
Ber Berase 10−9 V/cm
γ Gmult 1 1

If the HoleTun is added to the keywords, the hole tunneling is
activated instead of electron tunneling. Thus, generation rate given
by Eq. 9.4 is added to the total hole surface generation rate at ~r.

9.4 Impact ionization
In the presence of extremely high electric field, electrons are sufficiently
accelerated to eject more electrons from the VB to the CB, thereby
creating an electron-hole pair in the semiconductor. This is called
impact ionization process. The generated electrons also undergo
acceleration and subsequent collision with electrons in VB generating
more e-h pairs. Thus, a single electron entering in a high field region
can create a large number of electrons. Similar process takes place for
holes.

Generation rate for the impact ionization process can be expressed
as follows.

GII = αn

∣∣∣ ~Jn∣∣∣+ αp

∣∣∣ ~Jp∣∣∣ (9.7)

Here,
∣∣∣ ~Jn∣∣∣ and

∣∣∣ ~Jp∣∣∣ are magnitudes of e and h current densities while
αn and αp are ionization coefficients of e and h, respectively.

Impact ionization can be activated in DD simulations as follows.

Physics: {
Recombination: {

AvalancheGen = ["vanOverstraeten"];
}

}

9.5. OPTICAL GENERATION 73

The keyword vanOverstraeten specifies that ‘Van Overstraeten’ model
is used for the calculation of the ionization coefficients.

9.4.1 Van Overstraeten model
The ionization coefficients αn and αp strongly depend on the electric
field parallel to the carrier transport direction. It is modeled using the
following expression.

αn/p(Fava,n/p) = γ · an/p · exp
(
−

γbn/p

Fava,n/p

)
(9.8)

Here, an/p and bn/p in Eq. 9.8 are the model parameters, and
Fava is magnitude of the electric field parallel to the carrier transport
direction.

Fava,n/p = ~F ·
~Jn/p

| ~Jn/p|
(9.9)

The factor γ is given as follows.

γ =
tanh

(
~ωop
2kT0

)
tanh

(
~ωop
2kT

) (9.10)

Here, ~ωop is the optical phonon energy.
Parameters in Eq. 9.8 and Eq. 9.10 are defined in VanOverstraeten

section of the Recombination part of the material config file. Default
values of the parameters are provided in Table 9.4.

Notice, that there are two values corresponding to the parameters
a and b which are noted as ah, al and bh, bl, respectively. They
correspond to low field and high field values of a and b, respectively.

9.5 Optical generation
Electron-hole pairs can be generated by irradiating the semiconductor
with photons of higher energy than the band gap. The DD simulator
provides various analytical models to mimic this effect.

74 CHAPTER 9. GEN-REC MODELS

Table 9.4: Van Overstraeten model parameters and their values
Symbol Parameter Electron Hole Unit

a al 7.03× 105 1.582× 106 –
ah 7.03× 105 6.71× 105 –

b bl 1.231× 106 2.036× 106 –
bh 1.231× 106 2.036× 106 –

F0 F0 4× 105 4× 105 V/cm
~ωop hbarOmega 0.063 0.063 eV
T0 T0 300.0 K

9.5.1 Constant generation

Constant generation model sets generation rate of e-h pairs to a
constant value. This model can be activated in a specific region or the
material as follows.

Physics: {
Recombination: {

ConstantGeneration = ["Rate = 1E10", "TimeRamp"];
}

}

The keyword Rate = 1E10 specifies constant rate of 1010cm−3, while
TimeRamp specifies that the rate will be changed from initial value
of 0 cm−3 to the final value specified in the Quasistationary or
Transient group in the following format.

Ramp: {
Voltage*gate = 1.0;
ConstantGeneration*Rate = 1E15;

}

9.5. OPTICAL GENERATION 75

9.5.2 Generation from file
Optical generation rate can also be input from maximum 20 files gener-
ated from the Finite Difference Time Domain (FDTD), Beam Propaga-
tion Method (BPM), or mode simulations. The name of the files is speci-
fied by arguments OpticalGenerationFile1... OpticalGenerationFile20
in the device File section. The name of the physical quantity to be read
from the files is specified by the argument OpticalGenerationField.

File: {
OpticalGenerationFile1 = "fdtdFinFET_TimeAvg_AvgMid_fdtd.h5";
OpticalGenerationField = "AbsElectricField";

}

Optical generation from the files can be activated by adding
GenerationFromFile keyword in Recombination section as follows.

Physics: {
Recombination: {

GenerationFromFile = ["FileIds = 1", "Scaling = 0", "TimeRamp"];
}

}

The keyword FileIds = 1 specifies the file id from which the gen-
eration rate is read. In this case the file is specified by argument
OpticalGenerationFile1. Keyword Scaling = 0 specifies the scal-
ing factor for the generation rate read from the file. TimeRamp specifies
that the scaling factor will be changed from initial value of 0 to the
final value specified in the Quasistationary or Transient group in
the following format.

Ramp: {
Voltage*gate = 1.0;
GenerationFromFile*Scaling = 1;

}

9.5.3 Approximate Radiative Recombination
Radiative recombination in the LEDs can be modeled in the DD simu-
lator approximately by using the approximate radiative recombination
model. It can be activated in the simulations as follows.

76 CHAPTER 9. GEN-REC MODELS

Physics: {
Recombination: {

ApproxRadiativeRec = [];
}

}

The model calculates the recombination rate by the following
expression.

R = C · n · p ·
(

T

Tpar

)α
(9.11)

Here, C is the model rate parameter, α is the temperature expo-
nent, and Tpar is the reference temperature. Note, that due to the
highly approximate nature of this model, for predictive analysis, it is
recommended to calibrate the parameters for each individual device
structure.

Parameters in Eq. 9.11 are defined in RadiativeRec section of the
Recombination part of the material config file.

Chapter 10

Traps

Various crystal defects may be present in the material or at material
interfaces. These defects act as recombination centers. The defects
can trap electrons during device operation and get charged. Charged
defects can affect electrostatics of the device. These effects can be
modeled in the DD simulator by defining the trap concentration in
the material/region or at the material/region interfaces.

10.1 Trap types

10.1.1 Donor type traps

Donor type traps are neutral when unoccupied, and carry a unit
positive electron charge when occupied. They are set by specifying
keyword Donor in the Type.

10.1.2 Acceptor type traps

Acceptor type traps are neutral when unoccupied, and carry a unit
negative electron charge when occupied. They are set by specifying
keyword Acceptor in the Type.

77

78 CHAPTER 10. TRAPS

10.2 Defining Bulk Traps
Bulk traps can be defined in the material/region physics section of the
config file in the Traps subsection as follows.

Physics*Material*Silicon: {
Traps: {

MidGapTr1: {
Type = ["Donor", "Gaussian", "FromValenceBand"];
Conc = 1E17; Energy = 0.0; EnSigma = 0.2;

}
}

}

Each subsection in Traps subsection creates a new trap definition.
Each trap definition consists of a set of arguments. Additionally, the
argument Type lists a list of comma separated keywords which sets
a number of internal flags. The MidGapTr1 definition in the above
example creates Donor traps with energetic distribution of Gaussian
in all the regions of Silicon material. FromValenceBand specifies that
the peak energy value is set from the VB edge (positive value means
energy into the band gap). In the Trap section, the argument Conc
specifies peak concentration of defects, Energy sets the energy of the
peak from the VB edge, and EnSigma sets the standard deviation of
the energetic Gaussian.

10.3 Energetic trap distributions
Energetic trap distribution in the band gap of the semiconductor is
often approximated by analytic shapes. Following shapes of energetic
trap distributions are available in DD simulator.

• Gaussian: A Gaussian distribution is defined by setting the
keyword Gaussian in Type. It is given by,

Dit(E) = Dit0 · exp
(
−1

2

(
E − E0

σ

)2
)

10.3. ENERGETIC TRAP DISTRIBUTIONS 79

• Uniform: A uniform distribution is defined by setting the key-
word Uniform in Type. It is given by,

Dit(E) =
{
Dit0 if E0 − 1

2σ < E < E0 + 1
2σ

0 otherwise

• Exponential: An exponential distribution is defined by setting
the keyword Exponential in Type. It is given by,

Dit(E) = Dit0 · exp
(
−|E − E0|

σ

)
• Level: A single level distribution is defined by setting the

keyword Level in Type. It is given by,

Dit(E) = Dit0 · δ(E − E0)

• Table: Energetic trap distribution can be specified as a piecewise
linear curve. It can be set by specifying argument ConcTable
with a list of floating point numbers. In this list, each trap energy
level is followed by the trap concentration at that level. For
example a piecewise linear trap distribution with Dit(−0.25) =
1E13, Dit(0.) = 1E15, and Dit(0.25) = 1E13 is created by
specifying the following argument in the trap definition.

ConcTable = [-0.25, 1E13, 0.0, 1E15, 0.25, 1E13];

In all the above trap distributions, E0 in eV is specified by Energy
and σ in eV is set by EnSigma. Dit0 is set by Conc. For Level traps,
Conc has the unit of cm−3 for bulk traps, and in cm−2 for interface
traps. For all other distributions, Conc has the unit of cm−3eV−1 for
bulk traps, and in cm−2eV−1 for interface traps.

Except Level trap, all energetic trap distributions create 13 trap
energy levels in the band gap. Concentration at each of the energy
levels creates the energetic distribution with the given shape. Level
trap creates exactly one trap level at the energy E0.

By default, the trap energy levels given by E0 or in Table distri-
bution are defined relative to the mid-band energy. Specifying the

80 CHAPTER 10. TRAPS

keyword FromValenceBand in Type defines trap energy levels from
the VB in the direction of the CB edge. Specifying the keyword
FromConductionBand defines trap energy levels from the CB in the
direction of the VB edge.

Specifying ClipTrapsToBandgap in Type clips energetic trap dis-
tribution within the band gap.

10.4 Spatial trap distribution

In addition to the energetic distribution, spatially distributed trap
densities can also be created in DD simulator. Following types of
spatial distributions are available.

• SpatiallyGaussian: A spatially Gaussian distribution is de-
fined by setting the keyword SpatiallyGaussian in Type. It is
given by,

Dit(E, x, y, z) = Dit(E)·exp
(
−1

2

(
x− x0

σsx

)2
+
(
y − y0

σsy

)2
+
(
z − z0

σsz

)2
)

• SpatiallyExponential: A spatially exponential distribution is
defined by setting the keyword SpatiallyExponential in Type.
It is given by,

Dit(E, x, y, z) = Dit(E) ·exp
(
−|x− x0|

σsx
− |y − y0|

σsy
− |z − z0|

σsz

)

• SpatiallyUniform: A spatially uniform distribution is defined
by setting the keyword SpatiallyUniform in Type. It is given
by,

Dit(E, x, y, z) =
{
Dit(E) if|x− x0| < σsx ∩ |y − y0| < σsy ∩ |z − z0| < σsz
0 otherwise

10.5. TRAPPING AND DE-TRAPPING MODELS 81

• SpatiallyLocalized: A spatially localized distribution is de-
fined by setting the keyword SpatiallyLocalized in Type. It
is given by,

Dit(E,~r) =

Dit(E) if ~r =
{
~rv : v = argmin

i∈vertices
|~ri − ~r0|

}
0 otherwise

The above equation essentially sets a single trap level at the
vertex nearest to ~r0.

In all the above trap distributions, ~r0 is specified in µm by Center
and ~σs in µm is set by Sigma. Dit(E) is calculated at each energy
level E by the energetic distribution.

10.5 Trapping and de-trapping models

During device operation, various trapping/de-trapping processes take
place simultaneously. Rates of these processes determine occupancy of
the traps.

• Electrons in the CB are captured by the traps with the rate
of cnC. This process charges an Acceptor trap, or it neutralizes
positive charge on a charged Donor trap.

• Holes in the VB are captured by the traps with the rate of cpV.
This results in charging of a Donor trap, or a neutralization of a
charged Acceptor trap.

• The trapped electrons are emitted to the CB with the rate of
enC. This process neutralizes an Acceptor trap, or it creates a
positive charge on a neutral Donor trap.

• The trapped holes are emitted to the VB with the rate of epV.
This process neutralizes a Donor trap, or it charges a neutral
Acceptor trap.

82 CHAPTER 10. TRAPS

10.5.1 Trap occupancy

Occupancy of the trap levels depends on the rates of charging and
discharging of the traps. Electron occupation factor fn of the trap
level is determined by net rate of capture of CB electrons rnC minus
net rate of capture of VB holes rpV . This is given by,

∂fn

∂t
= rnC − r

p
V (10.1a)

rnC = (1− fn) · cnC − fn · enC (10.1b)
rpV = (1− fp) · cpV − fp · e

p
V (10.1c)

fp = 1− fn (10.1d)

If the capture and emission rates are known, then the set of Eq. 10.1 can
be written as a partial differential equation in fn. In Quasistationary
ramps, the steady state is reached at each step and ∂fn

∂t = 0. This
condition, when inserted in Eq. 10.1, yields electron occupancy at a
trap level fn as follows.

fn = cnC + epV
cnC + cpV + enC + epV

(10.2)

Once fn is known, fp is calculated using Eq. 10.1d. Trapped charge
density on the Acceptor traps is given by −fn ·Dit,acc, where negative
sign implies a negatively charged trap. Trapped charge density on the
Donor traps is given by fp ·Dit,donor. Net trapped charged density is
taken into account in solving Poisson equation.

Note, that the set of Eq. 10.1 are solved for each individual trap
energy level to calculate occupancy of that level. For example, if there
are 13 trap levels in the band gap, occupancy of each of the levels fn
will be calculated by solving Eq. 10.1 for each level separately.

10.5.2 Capture and emission rates

Capture and emission rates used in the above equation depend on
various factors including trap energy level, carrier density, and the

10.6. CONFIG FILE OF DIODE WITH TRAPS 83

current density. Capture rate of an electron from the CB and that of
a hole from the VB is given by,

cnC = σn

(
(1− gJn) · vnth · n+ gJn ·

| ~Jn|
q

)
(10.3a)

cpV = σp

(
(1− gJp) · vpth · p+ gJp ·

| ~Jp|
q

)
(10.3b)

Here, σn/p are electron/hole capture cross-sections, vnth and vpth are
thermal velocities of electron and hole. The model parameters gJn/p
determine proportionate contribution of n and of | ~Jn| to the total
capture rate.

enC = σn · vnth · n1/gn + enC0 (10.4a)
epV = σp · vpth · p1/gp + epV 0 (10.4b)

n1 = NC exp
(
q(Etrap − EC)

kT

)
(10.4c)

p1 = NV exp
(
q(EV − Etrap)

kT

)
(10.4d)

where, gn/p are degeneracy factors, Etrap is the trap energy level, and
NC/V are CB and VB DOS. An additive constants to the emission
rates are given by enC0 for electron emission and epV0 for hole emission.

When gJn/p = 0 and enC0 = epV0 = 0, the above equations follow the
principle of detailed balance.

The above defined parameters can be set in Traps section of
Recombination part of material config file. Their default values are
provided in Table 10.1.

10.6 Config file of diode with traps
An example DD solver config file for simulating a diode with traps is
given below. As shown in Fig. 10.1, the diode consists of two Silicon
regions named – RegSi1 and RegSi2. Interface traps have been defined
at the interface between these two regions.

84 CHAPTER 10. TRAPS

Table 10.1: Parameters of trap capture and emission rates and their
default values

Symbol Parameter Electron Hole Unit
vth vth0 2.3× 106 1.7× 106 cm/sec
gJ Jfactor 0 0 –
g Gfactor 2 2 –
σ Xsection 10−15 10−15 cm2

eC0/V0 ConstEmissionRate 0 0 cm−3sec−1

Figure 10.1: A 2D diode structure with two Silicon regions ‘RegSi1’
and ‘RegSi2’ is simulated by defining traps at ‘SiReg1 SiReg2’ interface.

10.6. CONFIG FILE OF DIODE WITH TRAPS 85

File: {
Device = "diode_str.cfg";
Out = "Diode";
Simulation = "DD";

}

Contacts: {
Anode: {Voltage = 0.0; Type = ["Semiconductor"];}
Cathode: {Voltage = 0.0; Type = ["Semiconductor"];}

}

Physics: {
Mobility: {

DopingDep: { Masetti: []; }
}
Recombination: {

SRHRecombination = ["DopingDep"];
}

}

Physics*Material*Silicon: {
Mobility: {

DopingDep: { Masetti: []; }
}
Recombination: {

SRHRecombination = ["DopingDep"];
}
/*Traps:
{

MidGapTr2: {
Type = ["Acceptor", "Gaussian", "SpatiallyGaussian"];
Conc = 1E17; Energy = 0.0; EnSigma = 0.2;
Center = [0.0, 0.0, 0.0]; Sigma = [0.1, 0.1, 0.1];

}
}*/

}

Physics*Region*RegSi1_RegSi2: {

86 CHAPTER 10. TRAPS

InterfaceTraps: {
MidGapTr1: {

Type = ["Acceptor", "ClipTrapsToBandgap"];
Conc = 1E13; Energy = 0.0; EnSigma = 0.2;

}
}

}

Math: {
IterationsFC = 40;
InnerIterationsFC = 10;
IterationsSC = 40;
LineSearchDamping = 1.1;
UndampedIterations = 0;
FCSolverTolerance = 1.0;
SCSolverTolerance = 1.;
BankRoseDamping = 2.71;
RelativeError = 1E-3;
tkMultFact = 1E-46;
tkExpMultFact = 0.25;
deltaK = 0.1;
AreaFactor = 1.;
SolverSettings = [

"InterpolateElecPotential",
"InterpolateElecFermi",
"InterpolateHoleFermi",
"IncludeMobilityDensityDerivative"
];

}

Plot: {
Quantities = ["ElectronDensity",

"HoleDensity",
"ElectricFieldY",
"ElectricFieldX",
"AbsElectricField",
"ElectrostaticPotential",
"TotalRecombination",

10.6. CONFIG FILE OF DIODE WITH TRAPS 87

"HoleMobility",
"ElectronMobility",
"AbsElectronCurrent",
"AbsHoleCurrent",
"AbsGradEFermi",
"AbsGradHFermi"];

}

Solve:
{

Static*PoiTemp: {
Coupled: ["Poisson"];

}

Quasistationary*RevBias:
{

initstep = 1E-3; minstep = 1E-7;
maxstep = 0.1; incr = 1.35; decr = 2.;
Ramp: {

Voltage*Anode = -2.0;
}
Coupled: ["Poisson", "Electron", "Hole"]
Plot: { Time = [0.0, 0.5, 1.]; }

}
}

The above file can be simulated using the following command.
>> ddsolver ddsolver diode_dev.cfg

In the quasi-stationary ramp RevBias, the diode is reverse biased
to -2.0V. Under reverse bias of 2.0V, acceptor traps are negatively
charged creating a sheet of negative charge at SiReg1_SiReg2 interface.
Entire voltage drop appears in the n-doped region SiReg2. Therefore,
electric field is present only in the n-doped region as seen in Fig. 10.2(a).
Similarly, the depletion region appears only in n-doped region as seen
from electron and hole densities in Fig. 10.2(b) and Fig. 10.2(c).

Donor traps can be defined at the interface instead of the acceptor
traps by changing the following line in the above file.

88 CHAPTER 10. TRAPS

(a) Electric field

(b) Electron density

(c) Hole density

Figure 10.2: (a) Electric field, (b) Electron density, and (c) Hole
density in a 2D diode structure with 1013/cm2eV uniform ‘Acceptor’
traps defined at the interface.

10.6. CONFIG FILE OF DIODE WITH TRAPS 89

Type = ["Donor", "ClipTrapsToBandgap"];
Performing the diode simulations again yields electric field only in the
p-doped region as shown in Fig. 10.3(a). Under the reverse bias, the
donor traps are positively charged, creating a sheet of positive charge at
SiReg1_SiReg2 interface. Similarly, depletion appears only in p-doped
region as seen from electron and hole densities in Fig. 10.3(b) and
Fig. 10.3(c), respectively.

Alternately, bulk traps can be defined instead of interface traps by
commenting out interface trap section, and uncommenting the Traps
section in Physics*Material*Silicon:. This section defines bulk
traps localized at ~r = [0., 0., 0.]µm with σ = 0.1µm.

90 CHAPTER 10. TRAPS

(a) Electric field

(b) Electron density

(c) Hole density

Figure 10.3: (a) Electric field, (b) Electron density, and (c) Hole
density in a 2D diode structure with 1013/cm2eV uniform ‘Donor’
traps defined at the interface.

Chapter 11

Nonlocal tunneling
models

Tunneling of electrons and holes across across a potential barrier is
modeled in the DD solver by various non-local tunneling models. These
models are applied on a special non-local mesh defined on the device
structure.

11.1 Non-local mesh
A Nonlocal Mesh (NLM) is a set of straight lines which begin at a
specified list of region-interfaces or material-interfaces and extends
along the specified direction. The nonlocal mesh is defined only in the
math section (Math: { ... }) in the DD solver config file.

A nonlocal mesh is defined in the DD solver config file as follows.

Math:
{

NLLine*Line1:
{

RegionInterfaces = ["Reg1/Reg2", "Reg3/Reg4"]
Length = 1; // in micrometers
ReverseLength = 0.5; // in micrometers

91

92 CHAPTER 11. TUNNELING MODELS

Spacing = 1E-3; // in micrometers
Direction = [1,0,0]; // unitless

}

NLLine*Line2:
{
...

}
}

The above script defines a NLM named Line1. The mesh is a set of
nonlocal lines starting at the region-interfaces listed in the argument
RegionInterfaces. The lines extend along the direction given by the
argument Direction by length given by Length. Additionally, the
lines are also extended along the opposite direction by length specified
by ReverseLength from the region-interface. Each of these lines is
discretized with the discretization length given by Spacing. Multiple
NLM definitions can be listed in Math section as given in the script.

Various non-local models utilize the NLMs defined in Math section.
Names of the NLMs on which the models are active, are listed along
with the models. The nonlocal models are listed in the next sections.

11.2 Intra-band tunneling
When the n-channel MOSFET is in off-state, electrostatic barrier
under the gate prevents flow of electrons from source to drain. When
the source-drain is biased, high energy electrons flow over the barrier
generating a tiny thermionic leakage current. As MOSFET chan-
nel length has shrunk below few 10s of nanometers, a new leakage
mechanism has emerged. Electrostatic barrier under the channel has
also shortened due to the shortening of the channel length. As a
result, electrons tunnel from source-to-drain creating a larger leakage
current. Since electrons tunnel from the CB in the source region to
the CB in the drain region, this tunneling mechanism is classified as
‘intra-band tunneling’ meaning within the same band. Note, that the
above description is also applicable to a p-channel MOSFET when
electrons are replaced with holes.

11.2. INTRA-BAND TUNNELING 93

Tunneling of electrons or holes using the nonlocal tunneling model
is activated in the device using the following text in the config file.

Physics:
{

eNonlocalTunneling*T1: ["Lines1"]
hNonlocalTunneling*T2: ["Lines2"]

}

Notice, that the models are defined in global Physics section instead of
‘region-wise’ physics sections. eNonlocalTunneling keyword defines
nonlocal intra-band tunneling model for electron tunneling, whereas
hNonlocalTunneling keyword defines it for hole tunneling. Names of
NLMs along which the tunneling models are active, are listed along
with the model definitions. These NLMs must be defined in Math
section as described in Section-11.1.

Tunnel rate of electrons or holes is calculated along each of the
nonlocal lines in the specified NLMs as follows.

Tunneling rate is calculated at every discretized point at a distance
l along the nonlocal line by extending a tunnel path at tunnel electron
energy ε = EC(l). The tunnel path ends at the first point along the
line at a distance u > l, at which ε < EC(u). The recombination rate
at l and generation rate at u due to tunneling along this tunnel path
are calculated using Eq. 11.1.

Rt(l, ε = EC(l)) = |
~F · l̂|
72~ · (

∫ u

l

dx

κ(x, ε))−1 · exp (−
∫ u

l

κc(x, ε)dx)·

(f(ε− Fn(u)
kT

)− f(ε− Fn(l)
kT

)) (11.1)

Gt(u) =Rt(l, ε = EC(l)) (11.2)

Here, κc(x, ε) =
√

2·me·(EC(x)−ε)
~ is an imaginary κ at each x along

the tunnel path. |~F · l̂| is electric field at l along the tunnel path.
f(x) = 1

1+exp(x) is Fermi-Dirac distribution function. The above
equation is obtained by deriving the tunnel rate as described in the
appendix of [1].

94 CHAPTER 11. TUNNELING MODELS

Thus, the intra-band electron tunnel rate is introduced in DD
equation as a recombination rate at l and a generation rate at u. If
tunneling takes place in the opposite direction (i.e. from u to l), the
rate will be negative. This would correspond to electrons tunneling
from u to l.

Similar expression is derived for intra-band tunneling of holes along
each of the nonlocal tunnel lines.

11.3 Band-to-band tunneling
In the presence of high electric field, electrons tunnel from VB to CB
resulting in generation of holes in the VB and generation of equal
number of electron in the CB. This process is inherently a nonlocal
process, since the location of electron generation is spatially separated
from that of hole generation. In the presence of ‘uniform’ electric field,
a local e/h generation rate can be derived as described in Chapter
9 Section 9.2. Accurate calculation of tunneling probability in the
presence of non-uniform field is performed by using the nonlocal
band-to-band tunneling model.

Tunneling of electrons or holes using the nonlocal tunneling model
is activated in the device using the following text in the config file.

Physics:
{

B2BNonlocalTunneling*T1: ["Lines1","Lines2"]
}

The models are defined in global Physics section. B2BNonlocalTunneling
keyword defines nonlocal band-to-band tunneling model. Names of
NLMs along which the given tunneling model is active, are listed along
with the model definitions. These NLMs must be defined in Math
section as described in Section-11.1.

The band-to-band tunnel rate is calculated along each of the
nonlocal lines in the specified NLMs as follows.

Tunneling rate is calculated at every discretized point at a distance
l along the nonlocal line by extending a tunnel path at the tunnel
electron energy. If electric field at l in the direction of tunnel path is
positive, then CB energy is set as tunnel energy (ε = EC(l)). Such

11.4. TRAP-TO-BAND TUNNELING 95

a tunnel path ends at the first point along the line (at u > l), at
which ε < EV(u). Alternately, if electric field at l along the path is
negative, then VB energy is set as tunnel energy (ε = EV(l)). Such a
tunnel path ends at the first point along the line (at u > l), at which
ε > EC(u).

The tunnel rate along the tunnel path CB→VB is calculated using
Eq. 11.5.

Rt(l, ε = EC(l)) = |
~F · l̂|
72~ · (

∫ u

l

dx

κ(x))−1 · exp (−
∫ u

l

κr(x)dx)·

(f(EV(u)− Fn(u)
kT

)− f(EC(l)− Fn(l)
kT

)) (11.3)

Here, κr(x, ε) = κc·κv√
κ2

c +κ2
v

is a ‘two-band’ imaginary dispersion relation
smoothly interpolated from CB to VB. Each of the κc/v are given by

κc/v(x, ε) =
√

2·me·(EC(x)−ε)
~ .

Tunnel rate of an electron from CB to VB, calculated by Eq. 11.5,
is added to the hole recombination rate at the point u and to the
electron recombination rate at the point l.

Similarly, the tunnel rate along the path from VB →CB is calcu-
lated. In this case, ε = EV(l) and the occupancy factors are adjusted
accordingly. It is added to the electron recombination rate at the point
u and to the hole recombination rate at the point l.

11.4 Trap-to-band tunneling
Defects at the semiconductor interfaces give rise to recombination
centers (also called traps). These traps capture or emit an electron to
the CB and capture or emit a hole to the VB. Modeling technique of
local e/h capture/emission processes has been described in Chapter
10. In addition to these processes, electrons or holes can also undergo
tunneling, respectively from CB or VB, to and from the trap.

Tunneling to the trap is classified as e/h capture process, while
tunneling from the trap is classified as e/h emission. Tunneling can be
activated in the interface trap definition in the config file as follows.

Physics*Material*Silicon: {

96 CHAPTER 11. TUNNELING MODELS

InterfaceTraps: {
MidGapTr1: {

Type = ["Donor", "Gaussian"];
Conc = 1E17; Energy = 0.0; EnSigma = 0.2;
eNLPs = ["Line1"];
hNLPs = ["Line2"]

}
}

}

In the above interface trap definition, the keyword eNLPs activates
tunneling along the NLMs specified as a list of arguments along with
that keyword. Similarly, the keyword hNLPs activates tunneling along
the NLMs listed along with that keyword.

Capture cross-section of electrons due to the tunneling process is
be calculated along the nonlocal lines in the specified NLMs as follows.

At each interface vertex, energy levels of the interface traps are
discretized in the band gap of the semiconductor. Electron capture
cross-section at every trap energy level (Et) is obtained by calculating
tunnel rate along the non-local line starting from that vertex, ending
at a point u at which Et > EC(u). The capture cross-section is given
by.

σn(ε = Et) =2VT

√
8mc

~4 · (EC(u)− ε)2
√
ε− EV (l) · exp (−

∫ u

0
κc(x)dx)·

f(EC(l)− Fn(l)
kT

) (11.4)

This capture cross-section is added to the capture cross-section
originating from the local processes to calculate trap occupancy (see
Eq. 10.1). Electron capture rate at the given trap energy level (Et) by
tunneling is obtained by considering the trap density and occupancy.
Similarly, electron emission rate is calculated. Net electron capture
rate (capture rate − emission rate) is added to electron recombination
rate at the point u. In this way, nonlocal trapping of electrons is
included in the DD simulations.

Nonlocal capture and emission of holes by tunneling is modeled
in the similar way as follows. Hole capture cross-section at every
discretized trap energy level (Et) is obtained by calculating tunnel

11.5. PARAMETERS 97

rate along the non-local line starting from that vertex, ending at a
point u at which Et < EV(u). The capture cross-section is given by.

σp(ε = Et) =2VT

√
8mv

~4 · (EV (u)− ε)2
√
ε− EC(l) · exp (−

∫ u

0
κv(x)dx)·

f(EV(l)− Fn(l)
kT

) (11.5)

Similar to the electron-case, hole capture and emission cross-
sections are used to calculate net hole capture rate, which is added to
hole recombination rate at the point u.

11.5 Parameters
The above equations require electron and hole effective mass values for
each of the material along the tunnel path. The effective mass parame-
ters are defined in NonlocalTunneling section of the BandStructure
part of the material config file. The electron and hole effective masses
are specified with the keyword mc and mv, respectively.

11.6 Visualization
Total electron and hole tunnel rates arising from all the nonlocal tunnel-
ing processes can be visualized using the keywords eNonlocalRecombination
and jNonlocalRecombination, respectively, in the Plot section in
Quantities list.

Note: Derivatives of the nonlocal recombination processes are not
added to the ‘Jacobian’ in the DD simulations. As a result, AC
simulations do not consider the contributions of nonlocal tunneling
processes. Additionally, convergence issues might be encountered in
DC or transient simulations which include nonlocal tunneling processes,
especially for high tunnel rates.

Chapter 12

Electro-thermal
simulations

During device operation, carrier transport and generation/recombination
processes generate heat in the device. The generated heat increases
temperature locally creating temperature gradients. This results in
heat transport to the heat-sinks attached to the device. Increased
Temperature also alters semiconductor and metallic material properties
locally, which in turn affects heat generation rate. Accurate modeling of
the device characteristics necessitates solving heat transport equation
together with the carrier transport equation. The DD simulator enables
coupled as well as self-consistent solver for simulating carrier transport
and heat transport.

12.1 Config file
An example config file which enables electro-thermal transport is
provided below.

File: {
Device = "diode_str.cfg";
Out = "Diode";
Simulation = "DD";

99

100 CHAPTER 12. ELECTRO-THERMAL SIMULATIONS

}

Contacts: {
Anode: {Voltage = 0.0; Type = ["Semiconductor"]; Temperature=300.}
Cathode: {Voltage = 0.0; Type = ["Semiconductor"]; Temperature=310.}

}

Physics: {
Mobility: {

DopingDep: { Masetti: []; }
}
Recombination: {

SRHRecombination = ["DopingDep"];
}
ThermalProperties: {

HeatCapacity: ["TempDep"];
HeatConductivity: ["TempDep"];

}
}

Math: {
IterationsFC = 40;
InnerIterationsFC = 10;
FCSolverTolerance = 1.0;
SolverSettings = ["InterpolateElecPotential",

"InterpolateElecFermi",
"InterpolateHoleFermi"];

}

Plot: {
Quantities = ["ElectrostaticPotential",

"TotalRecombination",
"AbsElectronCurrent",
"AbsHoleCurrent",
"eJouleHeat",
"hJouleHeat",
"HeatGeneration",

12.2. CONTACTS SECTION 101

"Temperature",
"ConductionBandEdge",
"ValenceBandEdge"];

}

Solve: {
Static*Temp: {

Coupled: ["Temperature"];
}

Static*PoiTemp: {
Coupled: ["Poisson", "Temperature"];
Plot: { Time = [0.0]; }

}

Quasistationary*AnodeRamp: {
initstep = 1E-3; minstep = 1E-7; maxstep = 0.1; incr = 1.35; decr = 2.;
Ramp: {

Voltage*Anode = 2.0;
}
Coupled: ["Poisson", "Electron", "Hole", "Temperature"]
Plot: { Time = [0.0, 0.5, 1.]; }

}
}

The above config file has the same structure as the one presented in
Chapter 2, except a few additional keywords and arguments described
below.

12.2 Contacts section

Setting Temperature argument in the contact definitions internally
creates a heat-sink with the specified temperature. For example, adding
Temperature in the contact definition of both Anode and Cathode
creates two thermal contacts with the same names.

102 CHAPTER 12. ELECTRO-THERMAL SIMULATIONS

12.3 ThermalContacts section

If a ThermalContact named ThContA is explicitly defined in the
structure config file of the device, its temperature can be set by
creating a separate ThermalContacts section and adding the thermal
contact definition to it as follows.

ThermalContacts: {
ThContA: { Temperature=300.; }

}

12.4 Physics section

ThermalProperties subsection can be added to the regionwise/materialwise/global
Physics section. Active models in the region can be defined in the
section. In the above file, temperature dependent heat capacity and
heat conductivity have been defined by adding TempDep to the models
HeatCapacity and HeatConductivity.

12.5 Solve section

The solver is notified to solve heat transport equation coupled with
Poisson and continuity equations by adding Temperature keyword in
Coupled statement as shown in the solve section.

12.6 Material config file

Parameters associated with temperature dependence of the heat capac-
ity and the heat conductivity are set in ThermalProperties part of
the material config file. The parameters can be defined as mole-fraction
dependent by using the same settings as described in Chapter 2.

12.7. HEAT TRANSPORT EQUATION 103

12.7 Heat transport equation
Heat generated in the active regions of the device dissipates according
to the following heat transport equation.

c · ∂T
∂t
−∇ · (κ∇T) = GHeat (12.1)

Here, c is the heat capacity of the material, κ is the thermal conductiv-
ity, and T is local temperature in the device. GHeat is the rate of heat
generation due to carrier transport as well as carrier recombination
mechanisms.

12.8 Heat conductivity
Heat conductivity κ determines how fast generated heat is spread
across the material. In DD simulator, temperature dependent heat
conductivity has been modeled as follows.

κ = κA + κB · T + κC · T 2 (12.2)

Here, κA, κB, and κC are the model parameters. They can be set
in TempDepConductivity section of ThermalProperties part in the
material config file.

12.9 Heat capacity
Heat capacity cv determines how much heat is needed to increase
temperature of a unit mass of the material by a unit temperature. In
DD simulator, temperature dependent heat capacity is modeled using
the following equation.

cv = cva + cvbT + cvcT
2 + cvdT

3 (12.3)

Here, cva, cvb, cvc, and cvd are the model parameters. They can be
set in TempDepCapacity section of ThermalProperties part in the
material config file.

104 CHAPTER 12. ELECTRO-THERMAL SIMULATIONS

12.10 Heat generation in metals
Dissipative electron transport in metals generates heat locally due to
Ohmic resistance. Electron current in the metals can be expressed as
~Jm = σ∇φm. Heat generation rate due to the electron transport is
given by the following equation.

GHeat,M = σ|∇φm|2 (12.4)

Here, σ is the electron conductivity of the given metal and φm is elec-
tron Fermi level. It is implicitly assumed that no electron generation
takes place in the metal (∇ · ~Jm = 0) in deriving Eq. 12.4.

12.11 Heat generation in semiconductors
Dissipative electron and hole transport in semiconductors generates
heat locally. Also, recombination of electrons and holes releases heat
equal to the difference between electron and hole Fermi levels. Heat
generation due to these contributions is given by the following equation.

GHeat,S = qnµn|∇φn|2 + qpµp|∇φp|2 + q(φp − φn)R (12.5)

Here, µn/p are electron and hole mobilities, n and p are electron and
hole densities, φn/p are electron and hole Fermi energies, and R is
carrier recombination rate. First two terms on the Right Hand Side
(RHS) of Eq. 12.5 correspond to heat generated during electron and
hole transport. Last term of Eq. 12.5 corresponds to energy released
during recombination process.

12.12 Electro-thermal simulations of Metal-
Insulator system

Printed circuit boards (excluding the IC chip) are an example of a
metal-insulator system. These system need to be simulated to under-
stand the regions with high heat generation during operations. In the
example below, a metal strip without any insulator or semiconductor
region is simulated using the solver. The structure generation config

12.12. ELECTRO-THERMAL SIMULATIONS OF METAL-INSULATOR SYSTEM105

Figure 12.1: Dimensions of the simulated metal strip together with
the contact information. Values of ‘0’ and ‘1’ correspond to the contact
vertices. Value of ‘-3’ at the vertices implies that the vertices are of
the type - ‘Metal’.

file and the DD solver config file can be found in the tutorials which
come with the DD Solver software distribution. The structure can be
generated as follows.

>> ddsolver str metalStrip_str.cfg

The structure can be viewed in paraview as follows.
>> paraview MetalStrip_str.xdmf

As shown in Fig. 12.1 the metal strip is 2µm long and 0.4µm wide
2D structure. The structure is always assumed to be 1µm long in
Z- direction. It has contacts on the left and the right side which are
also connected to the heat sinks at room temperature. The contacts
are connected to the voltage source which is Quasistationarily
ramped from 0V to 1V. This generates heat (Eq. 12.4) which raises
metal temperature and increases its resistance which in turn limits the
current supply. Both the contacts are connected to the heat sink at
room temperature which draw out heat from the metal strip. Internally,
heat conduction follows Eq. 12.1, thus creating a nonuniform temper-
ature distribution throughout the strip. Steady-state temperature
distribution at 0.5V is shown in Fig. ??. This results in lower electron
conductivity at the center of the strip as shown in Fig. ??.

106 CHAPTER 12. ELECTRO-THERMAL SIMULATIONS

,ê,

12.12. ELECTRO-THERMAL SIMULATIONS OF METAL-INSULATOR SYSTEM107

,ê,,ê,

Appendix A

Notation and Acronyms

Acronyms

AC Alternating Current

BC Boundary Condition
BE Backward Euler
BPM Beam Propagation Method
BTBT Band-to-band Tunneling

CB Conduction Band

DC Direct Current
DD Drift-diffusion
DOS Density of States

FDTD Finite Difference Time Domain

HH Heavy Hole

109

110 Acronyms

LH Light Hole

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

NLM Nonlocal Mesh

PBC Periodic Boundary Condition
PDE Partial Differential Equation

RHS Right Hand Side

SRH Schockley-Read-Hall

VB Valence Band

Bibliography

[1] H. Carrillo-Nuñez, A. Ziegler, M. Luisier, and A. Schenk,
“Modeling direct band-to-band tunneling: From bulk to
quantum-confined semiconductor devices,” Journal of Applied
Physics, vol. 117, no. 23, p. 234501, 06 2015. [Online]. Available:
https://doi.org/10.1063/1.4922427

111

https://doi.org/10.1063/1.4922427

	1 Introduction
	1.1 Features
	1.2 Installation
	1.3 Licensing
	1.3.1 Purchasing the licenses
	1.3.2 Installation of SemiVi-activator
	1.3.3 License activation

	2 Device Simulator Config File
	2.1 DD Solver Config File
	2.2 File section
	2.3 Contacts section
	2.4 Physics section
	2.5 Math section
	2.6 Plot section
	2.7 Solve section
	2.8 Material parameters
	2.8.1 Mole Fraction dependence

	2.9 Running DD simulations
	2.10 Visualizing results

	3 Mixed-mode Analysis
	3.1 Config File
	3.2 File section
	3.3 Device section
	3.4 System section
	3.5 Math section
	3.6 Plot section
	3.7 Solve section
	3.8 Running mixed-mode simulations

	4 Small-signal Analysis
	4.1 AC Analysis Config File
	4.2 ACAnalysis section
	4.3 Running small-signal analysis

	5 Drift-diffusion Solver Equations
	5.1 Poisson equation
	5.2 Carrier continuity equation
	5.3 Coupled and self-consistent solver
	5.4 Domain Boundary Conditions
	5.4.1 Mirror BC
	5.4.2 PBC
	5.4.3 Defining PBC

	5.5 Electrical Boundary conditions
	5.5.1 Ohmic contacts
	5.5.2 Schottky contacts
	5.5.3 Contact Resistances

	5.6 Nonlinear solver
	5.6.1 Available Linear Solvers
	5.6.2 Convergence criterion

	6 Band-structure models
	6.1 Band-gap
	6.1.1 Band-gap Narrowing
	6.1.2 Electron affinity

	6.2 Carrier distribution
	6.2.1 Boltzmann approximation
	6.2.2 Approximate Fermi
	6.2.3 Density of States

	7 Mobility models
	7.1 Bulk mobility
	7.2 Doping dependence
	7.2.1 Masetti model

	7.3 Mobility degradation in the channel
	7.3.1 Lombardi model

	7.4 High field saturation
	7.4.1 Canali model

	8 Effect of mechanical stress
	8.1 Stress-strain modeling
	8.2 Band-edge shift
	8.2.1 CB-edge shift
	8.2.2 VB-edge shift

	8.3 Mobility modification

	9 Generation-Recombination models
	9.1 Shockly-Read-Hall recombination
	9.1.1 Carrier lifetimes

	9.2 Band-to-band generation
	9.3 Fowler-Nordheim tunneling
	9.4 Impact ionization
	9.4.1 Van Overstraeten model

	9.5 Optical generation
	9.5.1 Constant generation
	9.5.2 Generation from file
	9.5.3 Approximate Radiative Recombination

	10 Traps
	10.1 Trap types
	10.1.1 Donor type traps
	10.1.2 Acceptor type traps

	10.2 Defining Bulk Traps
	10.3 Energetic trap distributions
	10.4 Spatial trap distribution
	10.5 Trapping and de-trapping models
	10.5.1 Trap occupancy
	10.5.2 Capture and emission rates

	10.6 Config file of diode with traps

	11 Nonlocal tunneling models
	11.1 Non-local mesh
	11.2 Intra-band tunneling
	11.3 Band-to-band tunneling
	11.4 Trap-to-band tunneling
	11.5 Parameters
	11.6 Visualization

	12 Electro-thermal simulations
	12.1 Config file
	12.2 Contacts section
	12.3 ThermalContacts section
	12.4 Physics section
	12.5 Solve section
	12.6 Material config file
	12.7 Heat transport equation
	12.8 Heat conductivity
	12.9 Heat capacity
	12.10 Heat generation in metals
	12.11 Heat generation in semiconductors
	12.12 Electro-thermal simulations of Metal-Insulator system

	A Notation and Acronyms
	Acronyms

