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Chapter 1

Introduction

The FDTD simulation package is a software to perform FDTD simula-
tions on a rectangular or a cubic grid with a non-uniform mesh along
any of the three axes. A 2D or 3D structure created using SemiVi
tensor structure and mesh generator or an equivalent config file is
taken as an input for simulations. Electric fields and magnetic fluxes
calculated during the simulation can be stored on a 2D grid to visualize
as a movie, or can be post-processed to obtain phase, average, or time
evolution of the field at a node.

1.1 Features
FDTD simulator supports materials with the following properties.

• Constant real and imaginary permittivity,

• Wavelength-dependent real and imaginary permittivity,

• Dispersive materials which exhibit dielectric response of the
following models, 1. Drude model, 2. Debye model, 3. Lorentz
model, or 4. Kerr model.

• Constant but non-unity real permeability.

Following types of electromagnetic wave sources can be used in the
simulator.
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2 CHAPTER 1. INTRODUCTION

• Plane-wave source with various beam shapes such as, uniform
beam, Gaussian beam, or mode-beam.

• Dipole source.

The simulator supports domain boundary models, such as 1. RBC,
2. RBC, 3. CPML, and 4. RBC for oblique incidence. In the case of
RBC with oblique incidence of any of the waves, Sine-Cosine method
is internally used for FDTD simulations.

A Scattering Matrix (ScMat) calculation interface using FDTD
simulations has been implemented in the simulator. Using this interface,
ScMat elements can be calculated between user-defined ports for each
of the user-provided wavelengths. Extraction of broad-band ScMat
parameters at all the frequencies starting from DC to user-provided
frequency can be performed using the Broad-band ScMat interface.
Results of the simulation are stored in touchstone file formats.

FDTD simulator also comes with built-in Graphics Processing Unit
(GPU) acceleration which uses graphics cards to perform faster FDTD
simulations.

1.2 Installation
SemiVi currently supports software installation on various Linux
distributions. The software installer is available in Debian package
(*.deb file) and in RPM format (*.rpm file).

Note, the following package needs to be installed manually by you
before installing the circuit solver from the installer package.

• Intel math kernel libraries (released in 2020 or later): They
include distributions of open-mp, pardiso, etc. specific for
Intel processors. Installation of mkl libraries is necessary, only
if you have downloaded mkl version of the OptoSolver. The
OptoSolver sources mkl functions from the above installation.
These functions can offer speed-up in the calculations on Intel
processors. The mkl package can be downloaded from Intel
website. If the OptoSolver without mkl-acceleration is downloaded,
then installation of the above package is not necessary.
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• Nvidia Cuda (v11.6 or above) – only if GPU accelerated of
FDTD solver licenses are purchased. It is recommended to
install proprietary Nvidia drivers together with Cuda.

Once all the above packages are installed, download the installer on
the local machine. The installer file named optosolver_amd64.deb
will appear in the Downloads directory. Go to the directory using cd
command. Use the following command to install the optosolver from
the installer.

>> sudo apt install ./optosolver_amd64.deb

Alternately, one may use dpkg to install the software and use apt
to install missing dependencies as follows.

>> sudo dpkg -i ./optosolver_amd64.deb
>> sudo apt install -f

You need to have root access to install the software on your
machine.

1.3 Licensing
Two types of licenses can be purchased for SemiVi FDTD solver.

Node-locked licenses enable unlimited number of simultaneous
executions of the FDTD solver on the client machine. The node-locked
license limits the usage of the FDTD solver only to the machine on
which the license is activated.

With server licenses, the FDTD solver can be run on any of
the machines in the client organization on which the server license
is activated. However, only the specified number of simultaneous
executions are possibie at a time.

1.3.1 Purchasing the licenses
The clients can place order for any of the above licenses on SemiVi
website (https://www.semivi.ch/sales) or by contacting our sales-
person.

https://www.semivi.ch/sales
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We will process the request and send the license files by email. The
license files need to be activated on the desired machines using the
license key which is emailed separately using the following command.

1.3.2 Installation of SemiVi-activator
The license file must be activated on the desired computer before use.
For that purpose, download the installer semivila_amd64.deb file on
the local machine and install it as follows.

>> sudo apt install ./semivila_amd64.deb

1.3.3 License activation
To activate the license file, please run the following command.

>> semivila -a File.lic <Server|NodeLocked>License.lic\\

Replace File.lic with the your license file, and use appropriate
name for the activated file. You will be prompted to input the
16 digit license key. A successful activate of the license file will
generate the activated license file. Copy the activated license file to the
/opt/semivi/licenses/ folder and rename it to ServerLicense.lic
or NodeLockedLicense.lic for server and node-locked licenses respec-
tively. If you have more than one license files, please delete the older
expired license files. If you wish to keep more than one active license
files, you can also name the license files as <i>NodeLockedLicense.lic
where <i> could be from 0 to 49. For ex. 49NodeLockedLicense.lic
or 49ServerLicense.lic. The program will read the license files and
lock the first available license. All the target users must have read
rights on the license file.

User-guides of all the software provided by SemiVi are stored at
the location /opt/semivi/userguides/.

Tutorials of all the software provided by SemiVi are stored at the
location /opt/semivi/tutorials/optosolver.



Chapter 2

Theory of FDTD Solver

Response of a material system in the absence of electric charges to an
electromagnetic excitation is described by Maxwell’s equations (with
ρ = 0).

∇ · ~D = 0 (2.1a)

∇ · ~B = 0 (2.1b)

∇× ~E = −∂
~B

∂t
(2.1c)

∇× ~H = ∂ ~D

∂t
(2.1d)

Here, ~D = ε ~E is a displacement vector, E is an electric field, ~H = ~B/µ

is the magnetic flux, and ~B is the magnetic field.
Out of Maxwell’s equations, Eq. 2.1a and Eq.2.1b are always

satisfied by FDTD algorithm. Eq. 2.1c links spatial variation of electric
field vector ( ~E) with temporal variation of magnetic flux vector ( ~H)
and Eq. 2.1d links spatial variation of ~H with temporal variation of ~E.
In FDTD algorithm, these two equations (Eq. 2.1c and Eq. 2.1d) are
alternately solved on a special rectangular (cubic, in 3D) grid called
Yee grid at every half-time step. That is, Eq. 2.1c is solved at time-step
q while Eq. 2.1d is solved at time-step q + 1

2 .
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6 CHAPTER 2. THEORY OF FDTD SOLVER

2.1 FDTD Algorithm
Curl of ~E on the Left Hand Side (LHS) of Eq. 2.1c can be expanded
and its x, y, z components can be equated to those of the Right Hand
Side (RHS) which gives,

∂Ez
∂y
− ∂Ey

∂z
= −µ∂Hx

∂t
, (2.2a)

∂Ex
∂z
− ∂Ez

∂x
= −µ∂Hy

∂t
, (2.2b)

∂Ey
∂x
− ∂Ex

∂y
= −µ∂Hz

∂t
, (2.2c)

∂Hz

∂y
− ∂Hy

∂z
= σEx + ε

∂Ex
∂t

, (2.2d)

∂Hx

∂z
− ∂Hz

∂x
= σEy + ε

∂Ey
∂t

, (2.2e)

∂Hy

∂x
− ∂Hx

∂y
= σEz + ε

∂Ez
∂t

. (2.2f)

In FDTD algorithm, the above equations are discretized on a special
Yee grid. On this grid, various components of ~E and ~H are discretized
as shown in Fig. ??. Note, how these components are defined at the
points which are shifted by half the grid spacing from the node of the
grid. All these components are stored at the same [m,n, p] location
on the computer memory. Using the notations, update equation for
Ex at t = (q + 1)∆t is,

Eq+1
x [m,n, p] =

1− σ∆t

2ε
1 + σ∆t

2ε
Eqx[m,n, p]+

1
1 + σ∆t

2ε
( ∆t

ε∆y
{Hq+1/2

z [m,n, p]−Hq+1/2
z [m,n− 1, p]}−

∆t

ε∆z
{Hq+1/2

y [m,n, p]−Hq+1/2
y [m,n, p− 1]}), (2.3)

Similar update equations can be written for Ey and Ez. All the
components of ~E are computed at t = (q+1)∆t from ~E at t = (q−1)∆t
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and ~H at t = (q + 1)∆t. Note, that we have used integral location
numbers where the quantities are stored on computer memory.

Update equation for Hx at t = (q + 1/2)∆t is given by,

Hq+1/2
x [m,n, p] = Hq−1/2

x [m,n, p]+

( ∆t

µ∆z
{Eqy [m,n, p]− Eqy [m,n, p− 1]}−

∆t

µ∆y
{Eqz [m,n, p]− Eqz [m,n− 1, p]}), (2.4)

Similar update equations can be written for Hy and Hz. All the
components of ~H are computed at t = (q + 1/2)∆t from ~H at t =
(q − 1/2)∆t and ~E at t = q∆t.

In the above Eq. 2.3 and Eq. 2.4, ∆t is temporal time-step which
is kept fixed throughout the simulations. ∆x, ∆y, and ∆z are grid
spacing in x-, y- and z- directions. They can be fixed or variable
throughout the grid. But, the grid must be a rectangular (cubic, in
3D) grid. Also, ε is permittivity, µ is permeability, and σ is electric
conductivity of the material at location [m,n, p].

Two types of waves can propagate in 2D structures, Transverse
Magnetic (TM) and Transverse Electric (TE). In TM propagation, Ez,
Hx, and Hy are non-zero while other components are zero. In TE
propagation, Ex, Ey, and Hz components are non-zero while others
are zero. Update equations in these two distinct cases can be derived
by neglecting the ‘zero’ components in Eq. 2.2.

If WavelengthDepIndex is set in FDTD solver settings, then ε and
σ are calculated from wavelength dependent refractive index of the
material, using following equations,

ε = (n+ ik)2 = n2 − k2 + ink = ε′ + iε′′ (2.5)

where n and k are real and imaginary parts of refractive index at a given
wavelength (λ). Eq. 2.5 gives real and imaginary permittivity from
complex refractive index. Conductivity is calculated from imaginary
permittivity using the following relation,

σ = 2 · ε′′ · ε0ω = 2 · ε′′ · ε0 · (
2 · π · C

λ
) (2.6)

.
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2.1.1 Calculating time-step
To achieve stability of FDTD simulations, the time-step (∆t) has an
upper limit.

For 2D simulations,

∆t ≤ min
m∈[0,M),n∈[0,N)

1
cm,n(

√
1

∆2
x,m

+ 1
∆2

y,n
)

(2.7)

Here, ∆x,m and ∆y,n are the grid spacing at mth and nth point, and
cm,n is the speed of light at grid point [m,n].

For 3D simulations,

∆t ≤ min
m∈[0,M),n∈[0,N),p∈[0,P )

c

cm,n,p(
√

1
∆2

x,m
+ 1

∆2
y,n

+ 1
∆2

z,p
)

(2.8)

Here, ∆z,p is the grid spacing at pth point, and cm,n,p is the speed of
light at grid point [m,n, p].

In FDTD simulator, ∆t is set to the upper limit given above.

2.2 Boundary conditions
Three types of boundary conditions can be defined at any of the six
faces of cuboidal FDTD simulation domain in 3D (or four edges of
rectangular domain in 2D). They are described below.

2.2.1 RBC
This is default Boundary Condition (BC) at all the faces of cuboidal
domain. In update equations, it is implicitly assumed that ~E and ~H
are zero outside the simulation domain. This is same as introducing a
‘hard-wall’ at the boundary. As a result, all the electromagnetic waves
are reflected at the boundary.

2.2.2 RBC
A RBC is set at both ‘min’ and ‘max’ faces (such as ‘Xmin’ and ‘Xmax)
of the cuboid simultaneously.
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When all the light sources are emitting waves tangential to the
faces with RBC, ~E and ~H at the ‘min’ face are set to their values
at ‘max’ face. For example, if faces normal to x direction are set as
periodic, then ~E and ~H are updated as follows.

~E[0, n, p] = ~E[M − 1, n, p] ∀ n ∈ [0, N), p ∈ [0, P ) (2.9a)

~H[0, n, p] = ~H[M − 1, n, p] ∀ n ∈ [0, N), p ∈ [0, P ) (2.9b)

Similar equations may be written if RBC are set at the faces normal
to y- or z- direction.

When any of the light source is emitting waves in an oblique
direction, such that its component normal to the faces with RBC
is non-zero, the above equations are invalid. In that case, FDTD
simulation switches to sine-cosine method.

2.2.3 CPML
A CPML is set at any ‘max’ or ‘min’ face separately. It introduces
a special region in the first n layers nearest to the boundary, where
n is a user-defined number. During an ~E update in this special
region, an additional displacement coming from convolutional functions
(Ψq

Eu,v,w∀u, v, w ∈ x, y, z, u 6= v 6= w where v is the normal to the
CPML boundary) are added to it to cancel out the reflections coming
from the finite domain boundary at the surface.

If CPML is applied at ‘Ymin’, Eq. 2.2d changes to,

ε
∂Ex
∂t

= ∂Hz

∂y
− ∂Hy

∂z
+ Ψq

Ex,y,z
−Ψq

Ex,z,y
(2.10)

The convolutional function is defined as follows,

Ψq
Eu,v,w

= Cw ·
∂Hq

v

∂w
+ bw ·Ψq−1

Eu,v,w
(2.11)

Here, Cw and bw are functions of attenuation coefficient. Note, that
Ψq
Eu,v,w

depends on ~H as well as Ψq−1
Eu,v,w

. Value of the function at the
last time-step is stored at each of the grid points in the special region.
It is updated at every time-step as per Eq. 2.11.
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2.3 Dispersive medium
Many materials especially metals exhibit complex refractive index
which shows strong dispersion near specific frequencies, called ‘pole
frequencies’. Assumption of a constant refractive index is invalid
for such materials. They are treated using Auxiliary Differential
Equation (ADE) in FDTD simulations. Drude model provides a
good approximation of the dispersion of refractive index in metals.
Implementation of Drude model in FDTD using ADE method is
described below. The Electric susceptibility for a Drude model is given
by,

χe(ω) =
ω2
p

iω(iω + g) (2.12)

where ωp is the plasma frequency and g is the damping factor.
Polarization current in the material is given by,

~Jp = iωε0χe ~E = ε0
ω2
p

iω + g
~E (2.13)

Rearranging the terms and expressing in time-domain (iω → ∂
∂t ),

g ~Jp + ∂ ~Jp
∂t

= ε0ω
2
p
~E (2.14)

The above equation can then be used to update ~Jp at a given
time-step from its value at previous time-step. This polarization
current is added to the update equation for ~E. In this way, ADE is
used to model dispersive media with ‘Drude pole’ in FDTD algorithm.
Note, that ~Jp must be stored at each node of the dispersive material.

Other poles, such as ‘Debye pole’, ‘Lorentz pole’ are transformed
to the time domain in a similar manner.

2.4 Sources
2.4.1 Plane-wave source
A source is initialized as an axis-aligned rectangular window in 3D
or an axis-aligned segment in 2D structures. The source has its own
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‘auxiliary’ grid which is same as a cross-section of the FDTD grid
confined in the source window. ~E and ~H generated by the source (on
the auxiliary grid) are added to the existing ~E and ~H on FDTD grid.
In this way, the source behaves as a ‘soft source’.

To generate source ~E and ~H on the auxiliary grid, a point source
with a temporally sinusoidal excitation is employed at an end of the
grid. At every step, ~E and ~H are advanced using FDTD method on
the auxiliary grid independently. This procedure yields source ~E and
~H throughout the auxiliary grid with the same properties as the main
grid. They are then added to the existing ~E and ~H on the main grid
at the corresponding grid-points in the source window.

The above procedure outlines field update for a ‘uniform’ beam-
shape in the source window. To generate sources with different beam-
shapes, such as a Gaussian-beam, ~E and ~H are multiplied with a spatial
Gaussian function. Similarly, to generate a source with the beam-shape
of a mode, ~E and ~H are multiplied with the magnitude of mode
electric field. In this treatment, phase information of Gaussian-beam
or mode-beam is ignored.

2.4.2 Dipole source
Existence of an electric dipole at any node in the grid introduces
a polarization current in the direction of that of the dipole. It is
subtracted from ~E at the given node. To avoid pumping energy into
the grid indefinitely, polarization current is assumed to be temporally
Gaussian or of the shape of Ricker wave.





Chapter 3

Configuration File
Structure

Optosolver software reads various inputs from a FDTD solver config-
uration file and performs FDTD simulations for a given time. The
FDTD solver is executed by using the following command –

>> OptoSolver fdtdsolver fdtdSiWG_dev.cfg

In the above command, the word after Optosolver is the name
of the program to be executed (in this case – fdtdsolver). The
program name is followed by the configuration file name (in this case –
fdtdSiWG_dev.cfg). A sample configuration file of the FDTD solver
is provided below.

File:
{

Device = "fdtdSiWG_str.cfg";
Out = "SiWG";

}

Solver:
{

13



14 CHAPTER 3. CONFIGURATION FILE STRUCTURE

MaximumTime = 15E-14;
GridType = "TM";
Settings = ["WavelengthDepIndex"];

}

Source*left:
{

Type = "PlaneWave";
BeamShape = "ModeBeam";
Position: ([-0.6, -0.2, 0.], [-0.6, 0.2, 0.]);
Theta = 90;
Phi = 0;
Wavelength = 0.3;
EffectiveIndex = 3.5;
NRise = 5;
Intensity = 1000;
Delay = 1;
Flags = ["UsePowerMethodModeSolver"];

}

Boundary*xbdr:
{

Axis = ["Xmin", "Xmax"];
Model = "CPML";
PMLLayers = 20.;

}

Boundary*ybdr:
{

Axis = [ "Ymin", "Ymax", "Zmin", "Zmax"];
Model = "CPML";
PMLLayers = 20.;

}

Movie*XYEField:
{

Size = "640x480";
Plane = "XY";
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Intercept = 0;
Quantities = ["ElectricFieldZ"];

}

PointSensor*X0pt:
{

Position = [0.05, 0.025, 0.];
Quantities = ["AbsElectricField", "AbsMagneticFlux"];

}

TimeAverage*AvgMid:
{

TimeBegin = 2E-15;
TimeEnd = 4E-15;
Quantities = ["AbsElectricField", "AbsMagneticFlux"];
Position = ([-0.35, -0.35, 0.], [0.35, 0.35, 0.]);
TimeSteps = 1;

}

PhaseCalculator*Ph:
{

Time = 2E-15;
Quantities = ["ElectricFieldZ", "MagneticFluxZ"];
Position = ([-0.35, -0.35, 0.], [0.35, 0.35, 0.]);

}

Detector*det:
{

StepX = 5;
StepY = 5;
StepZ = 5;

Tolerance = 1E0;
StartTime = 2E-15;
Position = ([-0.35, -0.35, -0.26], [0.35, 0.35, 0.26]);
Quantities = ["ElectricFieldZ"];

}
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The above config file is composed of various sections which define
the solver settings, sources, domain boundaries, detectors, the quan-
tities to be visualized over time, etc. In the config file, the string
before ’*’ gives the section type, whereas the string after ’*’ specifies
the section name. Various keywords in each of the section and their
functionality is shortly described below.

3.1 File Section
The keyword Device provides the file name from which the device
structure is created. Internally, the file is processed differently accord-
ing to its extension.

• If the file extension is “str.cfg”, the file is processed as an input
file for the tensor mesh generation.

• If the file extension is “str.h5”, The file is read as hdf5 file
generated by the structure and tensor mesh generator.

The keyword Out sets the prefix to the output file name. Prefix is
followed by the type of data the file stores, e.g. PointSensor, TimeAv-
erage, etc. The file name also contains unique identifiers of the file.
In this case, the output files will be called ‘SiWG <UID> fdtd.xdmf’
and ‘SiWG <UID> fdtd.h5’. Here, <UID> is a unique set of strings
specific for the file stored.

If the mode source is used, the mode solver is used to calculate
modes in the cross-section containing the source. In this case, the
program also stores the modal quantities in the files named ‘SiWG -
Xloc <xid> mode.xdmf’ and ‘SiWG Xloc <xid> mode.h5’. Here,
<xid> represents index of X coordinate at which the mode in the YZ
plane is calculated.

3.2 Solver Section
This section lists the information needed for the FDTD solver. Max-
imum time for which FDTD time stepping is performed is set by
the keyword ‘MaximumTime’. When the simulation domain is 2D,
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‘GridType’ specifies whether the grid is ‘Transverse Electric (TE)’ or
‘Transverse Magnetic (TM)’.

Various flags are provided as a list of comma-separated strings
with the keyword ‘Settings’. In the above file, the keyword ‘Wave-
lengthDepIndex’ is listed. Hence, the solver uses wavelength dependent
dielectric permittivity instead of a constant one.

Exactly one ‘Solver’ section must be present in the config file.

3.3 Source Section
Multiple sources with different names can be instantiated in a config
file.

In the given config file, a source named ‘left’ is instantiated. The
source section lists various properties of the source. This source is of
type ‘PlaneWave’. That is, it emits a sinusoidal wave in the direction
specified by polar angle ‘Theta’ and azimuthal angle ‘Phi’ (in degrees).
Wavelength of the wave (in µm) is set by the keyword ‘Wavelength’.
The source begins emitting the plane wave at time-step ‘Delay’ and
the wave reaches its full amplitude in ‘NRise’ time-steps. Amplitude
of the plane wave is set by the keyword ‘Intensity’ (W/m2).

Spatial window from which the plane wave is emitted into the
FDTD simulation is set by ‘Position’. Position is a ‘(...,)’ list of
two points (specified as list of three floating point numbers). In a
3D structure, the two points form diagonally opposite points of an
‘axis-aligned’ rectangle. An axis-aligned rectangle has all of its sides
parallel to one of the three axes. In a 2D structure, the two coordinates
define an axis-aligned segment.

Spatial shape of the plane wave in the plane of incidence (keyword
‘BeamShape’) is set to ‘ModeBeam’. This means, the mode solver calcu-
lates mode at the cross-section of the source at the source wavelength
near the index given by ‘EffectiveIndex’. Modal distribution of electric
field is used to determine spatial shape of the beam. Alternatively,
‘UniformBeam’ or ‘GaussianBeam’ can also be used as ‘BeamShape’.

Various flags can be provided as a list of comma-separated strings
with the keyword ‘Flags’. In the above file, the keyword ‘UsePower-
MethodModeSolver’ is listed as a flag. Hence, a faster ‘power method’
is used for mode calculations in mode solver.
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3.4 Boundary Section
Multiple ‘Boundary’ sections with different names can be instantiated
in a config file.

In the given file, a boundary section modeling ‘PML’ boundary
type has been instantiated. This model is applicable along the planes
at the boundary perpendicular to the axes given in the list with the
keyword ‘Axis’. In this case, since the keyword ‘Y’ is specified, the
model is applicable at the layers in XZ plane at both maximum and
minimum y boundaries. Separate boundary models can be applied at
+Y or -Y axis by using the keywords ‘Ymax’ and ‘Ymin’, respectively.
Boundaries perpendicular to Z axis are modeled in the same manner.

For ‘CPML’ type boundary, the number of absorbing PML layers
at the boundaries are specified with the keyword ‘PMLLayers’.

Separate boundary sections must be used for instantiating different
boundary models. Following boundary models are recognized by the
Beam Propagation Method (BPM) solver – 1. Perfectly Matching Layer
(PML) 2. Absorbing Boundary Condition (ABC) 3. RBC 4. RBC. By
default, boundaries at all the six faces of the simulation domain are
assumed to be reflecting.

3.5 Data Postprocessors
Various data postprocessors and visualizers are available in the FDTD
solver.

3.5.1 Movie section
FDTD solver can store a given quantity on a 2D grid or a 2D
cross-section of a 3D grid at each time-step in hdf5 format and a
script file to visualize the data as a movie in xdmf format. The files
are named, ‘<out> <secname> fdtd.h5’ and ‘<out> <secname> -
fdtd.xdmf’, respectively. Here <secname> is the name of the Movie
section.

In 2D grid, the data on the entire simulation domain is stored.
In 3D grid, the data in the plane parallel to the plane given by the
keyword Plane at the intercept given by Intercept is stored. In
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this case, data in ‘XY’ plane at the Z-intercept of 0.0 is stored. The
quantities to be stored are listed by the keyword Quantities as a list
of strings. In this case, ‘ElectricFieldZ’ is stored.

In this case, the files named ‘SiWG XYEField fdtd.h5’ and ‘SiWG -
XYEField fdtd.xdmf’ will be stored at the end of simulation. The data
can be visualized in paraview using the following command.

>> paraview SiWG_XYEField_fdtd.xdmf

3.5.2 PointSensor section
FDTD solver stores the value of the quantities at each time step at a
single point on the FDTD grid nearest to the point whose coordinates
are given by Position. The quantities to be stored are listed by the
keyword Quantities as a list of strings. In this case, ‘ElectricFieldZ’
is stored. The data is stored in ‘csv’ format in the file named ‘<out> -
<secname> fdtd.csv’, where <secname> is name of PointSensor
section.

3.5.3 TimeAverage section
FDTD solver stores average value of the given quantities in the cuboid
box defined by diagonally opposite points with the coordinates given
by Position. Time averaging is performed by averaging at each nth

time-step, where n is TimeSteps, starting from TimeBegin, ending
at TimeEnd. The quantities to be stored are listed by the keyword
Quantities as a list of strings. The data is stored in an hdf5 file
named ‘<out> TimeAvg <secname> fdtd.h5’. Here <secname> is
the name of the TimeAverage section. A xdmf file named ‘<out> -
TimeAvg <secname> fdtd.xdmf’ is also written for visualizing the
data with paraview.

3.5.4 PhaseCalculator section
The PhaseCalculator object of FDTD solver calculates phase and
amplitude of the given quantities at a time-step just after time given
by Time in the cuboid box defined by diagonally opposite points with
the coordinates given by Position. The quantities to be stored are
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listed by the keyword Quantities as a list of strings. The data is
stored in an hdf5 file named ‘<out> Phase <secname> fdtd.h5’. Here
<secname> is the name of the PhaseCalculator section. A xdmf
file named ‘<out> Phase <secname> fdtd.xdmf’ is also written for
visualizing the data with paraview.

3.6 Detector section

The Detector object of FDTD solver checks if time variation of all the
given quantities has stabilized below the tolerance given by Tolerance.
Once this condition is reached, time-stepping loop ends. Testing is
performed after time specified by StartTime in the cuboid window
(or rectangular window in 2D simulations). The quantities whose
tolerance is tested are listed by the keyword Quantities as a list of
strings. To accelerate this step, one can state that tolerance is tested
only on the grid formed by every nth x-, y-, and z- coordinate, where
n is specified by StepX, StepY, or StepZ, respectively.

3.7 Running FDTD Simulations

In this section, the above config file is used to perform mode calculations
on a lateral 2D cross section of a waveguide shown in Fig. 3.3. The
waveguide is aligned along the lateral direction (X-axis). It is invariant
along Z dimension (normal to the plane of the figure). The waveguide
structure can be created using the command

>> OptoSolver str fdtdSiWG_str.cfg.
It is not necessary to generate the structure before simulating it.

The config file for generating the structure (‘fdtdSiWG str.cfg’) can
be specified as Device in File section of the mode solver config file
‘fdtdSiWG dev.cfg’. The solver internally generates the structure and
passes it to the FDTD solver. The structure config file must also be
present in the same folder. Once the config file is set, the FDTD
calculations can be performed using the following command
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Figure 3.1: Structure of the lateral cross-section of the simulated
waveguide along X axis. The waveguide is invariant in Z direction
normal to the plane of the figure.

>> OptoSolver fdtdsolver fdtdSiWG_dev.cfg

3.8 Visualizing Results
The FDTD calculations will generate various hdf5 (extension *.h5)
and corresponding xdmf files (extension *.xdmf), depending on which
data visualizer/postprocessor object among those listed in Section 3.5.
The xdmf files can be opened in paraview for data visualization. Also,
the PointSensor object saves data in a ‘csv’ file which can be viewed
with any ‘csv’ viewer.

3.8.1 Average calculator
Average calculator stores time-averaged spatial distribution of the spec-
ified quantities in the hdf5 file ‘SiWG TimeAvg AvgMid fdtd.h5’. An
xdmf script file ‘SiWG TimeAvg AvgMid fdtd.xdmf’ is also generated
to visualize the data in paraview as follows.
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Figure 3.2: Time-averaged magnitude of Electric field

>> paraview SiWG_TimeAvg_AvgMid_fdtd.xdmf

It opens paraview, in which one can plot spatial distribution of
time-averaged magnitude of electric field (| ~E|) by clicking Apply and
then selecting AbsElectricField from the drop-down list on the top
panel. As shown in Fig. 3.2, since the waveguide exhibits negligible
loss, | ~E| is spatially uniform in Silicon region of the waveguide. The
emitted plane wave travels only a short distance during the simulation
time. Therefore, | ~E| is zero in the region ahead of the wavefront. Small
spatial variations in | ~E| are visible in the figure. They arise from small
internal reflections at oxide-Silicon surface.

3.8.2 Phase calculator
Phase calculator stores time-averaged spatial distribution of the spec-
ified quantities in the hdf5 file ‘SiWG Phase Ph fdtd.h5’. An xdmf
script file ‘SiWG Phase Ph fdtd.xdmf’ is also generated to visualize
the data in paraview as follows.
>> paraview SiWG_Phase_Ph_fdtd.xdmf

Fig. 3.3(a) plots Ez at a specific time point. The snapshot shows
sinusoidal variation of Ez between the source and the wavefront.
Fig. 3.3(b) plots spatial variation of the phase of Ez. It varies linearly
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(a) Magnitude of Electric Field

(b) Phase of Electric Field

Figure 3.3: Magnitude and Phase of Electric Field in Z direction.
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between −90 deg to 90 deg and back to −90 deg in each sinusoid of the
waveform.

3.8.3 Movie
Phase calculator stores snapshots of the specified quantities in the XY
plane at each time-step in an hdf5 file named ‘SiWG XYEField fdtd.h5’.
An xdmf script file ‘SiWG XYEField fdtd.xdmf’ is also generated to
visualize the data in paraview as follows.
>> paraview SiWG_XYEField_fdtd.xdmf
The movie can be played by first clicking Apply and then selecting
ElectricFieldZ from the drop-down list on the top panel. After that,
the play symbol on the top panel can be clicked to view the stored
snapshots as a movie in paraview

3.8.4 Point sensor
Point sensor stores time-variation of the specified quantities at a specific
location in a csv file ‘SiWG PointData Xid 95 Yid 53 Zid 0.csv’. Data
in this file can be imported in any csv plotting tool such as gnuplot,
qtiplot, or excel.



Chapter 4

Configuring FDTD
Solver

Example configuration files provided in Chapters 3, ??, and ?? list
typical configurations of FDTD solver for FDTD simulations, ScMat
calculations, and broad-band ScMat calculations, respectively.

In the chapter, a list of all the available configurations in the
FDTD solver and their usage information is provided. For clarity, the
keywords are listed section-wise. The mandatory keywords are marked
‘mandatory’. Optional keywords are provided with the default input
values.

4.1 Keywords in File Section
Following keywords must be listed in File section of FDTD solver
config file.

• Device: (Mandatory) Specify either a config file for structure
generation or a saved mesh file in hdf5 format.

• Out: (Mandatory) Specify prefix of the output csv, xdmf and
hdf5 files.

25
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4.2 Keywords in Solver Section
Following keywords may be listed in Solver section of FDTD solver
config file.

• MaximumTime: (Mandatory) Maximum time in Seconds till FDTD
time-stepping is performed.

• GridType: (Mandatory) In 2D, type of Grid used for FDTD
simulations. If the grid is transverse magnetic (‘TM’), Ez, Hx, Hy

are computed, where as if the grid is transverse electric (‘TE’),
Ex, Ey, Hz are computed. This keyword also sets mode polariza-
tion, if mode source is used for calculating beam shape.

• Settings: Additional settings applied to the grid are listed as
strings.

1. DisableTFSFOnSideFaces: Boundary box of Total Field
Scattered Field (TFSF) simulations is disabled on the side
faces

2. WavelengthDepIndex: Real and imaginary dielectric con-
stants are determined from the table of wavelength depen-
dent complex refractive indices specified in the material
config file. Linear interpolation is used if the wavelength is
not in the list. If the wavelength is outside of the table range,
then the dielectric constants are set to smallest/largest
frequency.

3. ActivateAllDispersiveMedia : Dispersive material model
parameters are provided in each of the material parameter
file. For each region, if the material is dispersive, the
dispersive model is automatically activated, if this flag is
set.

4. CalculateAdjustedFields : Electric and magnetic fields
are calculated on the ‘Yee’ grid. Thus, the two are spatially
shifted by half spacing. If this flag is set, magnetic fields
are interpolated to be on the same location as electric fields.
Note, that this operation is computationally expensive,
therefore, must be used only when absolutely necessary.
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4.3 Keywords in Source section
The source can be of type 1. PlaneWave, 2. Dipole, or 3. PEC. Input
parameters depend on the type of source selected.

4.3.1 Plane-wave source
• Position: (Mandatory) Defines a window from which the light

source is emitted into the simulation domain. It is a ‘(...,)’ list of
two points (each point is specified as list of three floating point
numbers). For example,

Position: ([-0.58, -0.25, 0.0], [-0.58, 0.25, 0.])

In a 3D structure, the two points form diagonally opposite points
of an ‘axis-aligned’ rectangle. An axis-aligned rectangle has all
of its sides parallel to one of the three axes. In a 2D structure,
the two coordinates define an axis-aligned segment.

• BeamShape: Spatial shape of the input beam in the source
window defined above. It can be – 1. Uniform, 2. ModeBeam,
or 3. GaussianBeam. By default, a uniform beam is used.

• Theta: (Mandatory) Polar angle of wave direction of the plane
wave source.

• Phi: (Mandatory) Azimuthal angle of wave direction of the plane
wave source.

• Intensity: (Mandatory) Intensity of the source (W/m2).

• NRise: Number of time-steps till the source begins to emit at
full intensity. It must be a positive integer. Default value is 0.

• Delay: Number of time-steps after which the source begins to
emit. It can take negative values. Default value is 0.

• Wavelength: (Mandatory) Wavelength of the source is specified
in the units of µm.
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• EffectiveIndex: (Mandatory) Effective refractive index of the
waveguide around which the waveguide modes are searched at
the source locations. It is applicable only if ModeBeam is used.

• PowerMethodTol: Applicable only when ModeBeam is used and
power method is used for mode calculations. When difference
between the eigenvalues between successive iterations is less than
the tolerance then the calculations are terminated. Default value
is 10−8.

• PowerMethodMaxIter: Applicable only when ModeBeam is used
and power method is used for mode calculations. Maximum
iterations for mode calculations using the power method. Default
value is 50.

• Flags: Various flags are set by providing a list of appropriate
keywords as comma-separated strings. Following flags can be
used.

1. UsePowerMethodModeSolver: A faster power method is
used for mode calculations.

2. ModeInBoundingBox: Only cross-section of the structure in
the source window is used for mode calculations, instead of
the entire cross-section of the structure in the plane of the
source.

3. VectorialModeEquation: Vectorial equation is used for
mode calculations instead of scalar equation.

• BeamCenter: Mandatory only when GaussianBeam is used. Cen-
ter of Gaussian beam.

• BeamRadius: Mandatory only when GaussianBeam is used. Ra-
dius of Gaussian beam at the center.

4.3.2 Dipole source
A dipole source is instantiated.

• DipoleCenter: (Mandatory) Location of dipole source.
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• Theta: (Mandatory) Polar angle of wave direction of the dipole.

• Phi: (Mandatory) Azimuthal angle of wave direction of the
dipole.

• Intensity: (Mandatory) Intensity of the dipole source.

• Delay: Number of time-steps after which the source begins to
emit. It can take negative values. Default value is 0.

• Spread: Standard deviation (in number of time-steps) of tempo-
rally Gaussian or Ricker-Wave dipole source.

4.3.3 PEC source
A PEC is instantiated. The PEC is characterized by the index of the
region in which the PEC must be instantiated.

4.4 Dispersive section
Metallic materials exhibit complex refractive index which shows strong
dispersion near specific frequencies. In FDTD solver, ADE method is
used to model highly dispersive materials such as Aluminum. Following
keywords are used to instantiate dispersive materials.

• Region: Name of the region in which the model is active. Each
region needs to have a separate section.

• Model: One of the following models can be selected for dispersive
material. 1. Drude, 2. Debye, 3. Lorentz, 4. Kerr,. Note, that
input parameters may be different for different models.

• NumberPoles: Number of poles to be used for modeling the
selected model.

• DeltaEpsi: A list of prefactors multiplied to each of the poles.
It is required for Debye and Lorentz models.

• PoleFreq: A list of pole frequencies in Hz. It is required for
Drude and Lorentz models.
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• DampFact: A list of damping factors. It is required for Drude
and Lorentz models.

• TauPole: A list of time constants. It is required for Debye model.

4.4.1 Kerr model
Materials which show Kerr effect may also have Lorentz poles or Debye
poles. Therefore Kerr model requires a special set of keywords which
are listed below.

• LorentzPoleFreq: A list of Lorentz-type pole frequencies in Hz.

• LorentzDamping: A list of Lorentz-type damping factors

• LorentzDeltaEpsi: A list of prefactors multiplied to each of
the Lorentz poles.

• DebyeTauPole: A list of time constants in Debye model.

• DebyeDeltaEpsi: A list of prefactors multiplied to each of the
Debye poles.

• KerrXi3: A list of prefactors of instantaneous Kerr effect.

• InstantaneousKerrFactor: A list of numbers (∈ [0., 1.]) which
determine proportion of instantaneous Kerr effect to Kerr-Raman
effect.

• OpticalPhononFreqency: A list of optical phonon frequencies
(in Hz) for Raman effect.

• RamanBandwidth: A list of Raman band-width numbers (in Hz)
for Raman effect.

Each of the list must have the same number of entries as NumberPoles.
If any one of the Lorentz (Debye) parameter list is not defined, then
Lorentz (Debye) pole will be deactivated.
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4.5 Keywords in Boundary section
In the config file, a Boundary section is instantiated by the name
‘Boundary*<name>’, where <name> represents the boundary name.
Multiple boundary definitions with different names can be instantiated
in a config file. Following keywords can be defined in Boundary section.

• Axis: Current boundary definition is applied to the list of
boundaries specified by Axis. Available sets of boundary names
are –

1. Xmin: YZ boundary at the smallest x-coordinate.
2. Xmax: YZ boundary at the largest x-coordinate.
3. Ymin: XZ boundary at the smallest y-coordinate.
4. Ymax: XZ boundary at the largest y-coordinate.
5. Zmin: XY boundary at the smallest z-coordinate.
6. Zmax: XY boundary at the largest z-coordinate.

The Axis are listed in the following format. Axis = ["Ymin", "Ymax"];

• Model Boundary type to be applied to the current boundary
condition. Following boundary models are recognized by the
FDTD solver – 1. CPML 2. RBC 3. RBC. Separate boundary
sections must be used for instantiating different boundary models.

4.6 Movie section
FDTD solver stores given set of quantities on a 2D grid or a 2D
cross-section of a 3D grid at each time-step in hdf5 format. An xdmf
file is also written to visualize the data as a movie in paraview. The files
are named, ‘<out> <secname> fdtd.h5’ and ‘<out> <secname> -
fdtd.xdmf’, respectively. Here <secname> is the name of the Movie
section. Following keywords can be listed in Movie section.

• Plane: Plane of 2D cross-section of a 3D grid. Available Values
are – 1. XY 2. XZ 3. YZ. In case of 2D simulations, the 2D grid
itself is used.
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• Intercept: Intercept of 2D cross-section of the 3D grid.

• Quantities: Comma separated list of quantities to be stored.

4.7 PointSensor section
When PointSensor object is defined, FDTD solver stores the value of
the quantities at each time step at a single point on the FDTD grid
nearest to the user specified point. They are stored in ‘csv’ format
in the file named ‘<out> <secname> fdtd.csv’, where <secname> is
name of PointSensor section. Following keywords can be listed in
this section.

• Position: Coordinate of the point as a list of three floating
points.

• Quantities: Comma separated list of quantities whose values
at a single point are to be stored.

4.8 TimeAverage section
When a TimeAverage object is defined, FDTD solver calculates average
of the required quantities in a bounding box given by the user. The data
is stored in an hdf5 file named ‘<out> TimeAvg <secname> fdtd.h5’.
Here <secname> is the name of the TimeAverage section. A xdmf file
named ‘<out> TimeAvg <secname> fdtd.xdmf’ is also written for
visualizing the data with paraview. Following keywords can be listed.

• Position: List of coordinates of two points which define an
axis-aligned cuboid (in 3D), or an axis-aligned rectangle (in 2D).

• TimeBegin: Time averaging begins at this time (in Seconds).

• TimeEnd: Time averaging ends when time exceeds this time (in
Seconds).

• TimeSteps: To reduce computational burden, every nth step is
added to the average. n is specified as an integer here.

• Quantities: Comma separated list of quantities whose average
is to be calculated.
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4.9 PhaseCalculator section
When PhaseCalculator object is defined, FDTD solver calculates
phase and amplitude of the required quantities at a user-provided time.
The data is stored in an hdf5 file named ‘<out> Phase <secname> -
fdtd.h5’. A xdmf file named ‘<out> Phase <secname> fdtd.xdmf’ is
also written for visualizing the data with paraview.

• Position: List of coordinates of two points which define an
axis-aligned cuboid (in 3D), or an axis-aligned rectangle (in 2D).

• Time: Time (in Seconds) at which phase and amplitude of the
given quantities is to be calculated.

• Quantities: Comma separated list of quantities whose average
is to be calculated.

4.10 Detector section
The Detector object of FDTD solver checks if time variation of all the
given quantities has stabilized below the tolerance given by Tolerance.
If yes, FDTD simulations are stopped. Following keywords can be
defined in this section.

• Position: List of coordinates of two points which define an
axis-aligned cuboid (in 3D), or an axis-aligned rectangle (in 2D)
window. The detector works in this window only.

• StartTime: Time (in Seconds) from which detection of stabilized
quantities begins.

• Quantities: Comma separated list of quantities which are to
be checked if stabilized or not.

• Tolerance: Average variation in the quantities must be less than
the tolerance.

• StepX: Specifies nx. Every nthx grid point along X axis is checked.

• StepY: Specifies ny. Every nthy grid point along Y axis is checked.

• StepZ: Specifies nz. Every nthz grid point along X axis is checked.





Chapter 5

Python Interface

The Opto-solver package provides a python module to perform FDTD,
BPM, and mode simulations using a python script. The package
also provides commands to retrieve simulation results. Together with
tensormesher python interface, it enables users to construct a device,
simulate it, and post-process the results using a python script. This
would come handy for structure optimization for specific applications.

This chapter describes python interface of the FDTD solver.
Note: Whenever possible, please use config file to setup the FDTD
solver object. Providing config file ensures that all the data are input
in the correct order.

5.1 Import modules
Python modules of the Opto-solver and the tensor-mesher package are
imported using the following script.
import numpy as np
import cutensormesher as m
import cuoptosolver as s

Note, that if you have downloaded hardware-accelerated version of
the optosolver, then you must import the modules with prefix cu as
shown above. Else, import tensormesher and optosolver. Do not
mix them.
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5.2 Constructors
Three constructors are provided for the FDTD-solver, as follows.

• s.fdtdsolver(Device=dev) constructs the solver object by tak-
ing m.device object dev provided by the tensor-mesher as an
input.

• s.fdtdsolver(CmdFile="file.cfg") constructs the solver ob-
ject by parsing config file of the FDTD-solver. Note, this is
exactly the same file as described in Chapter 3. It also imports
device structure or mesh from the Filesection.

• s.fdtdsolver(CmdFile="file.cfg",Device=dev) constructs
the solver object by parsing config file of the FDTD-solver. Note,
this is exactly the same file as described in Chapter 3, except
that device given as an argument is used in the solver..

5.3 Setup the solver
The commands given below are called on the fdtdsolver object. They
setup the solver, e.g. add sources, specify boundary conditions, etc.

Note: While modifying the solver object, it is strongly recommended
to use the following commands in the same order in which they are
listed below. For example, set global parameters, then set boundary
conditions, and then add sources.

5.3.1 setGlobalParameters
The command setGlobalParameters() sets solver various parameters
on a global scope. It takes the following arguments.

1. NumericParams : A python dictionary mapping parameter name
to its numeric value. The following numeric parameters can be
supplied.

• MaximumTime : Maximum simulation time. If a Detector
is set, then simulations may finish earlier.
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2. StringParams : A python dictionary mapping parameter name
to a string. The following string parameters can be supplied.

• GridType : Possible alternatives - ”TE” for TE grid or
”TM” for TM grid.

3. Settings : A python list of strings is suplied. Following strings
are recoginized.

• DisableTFSFOnSideFaces: Boundary box of TFSF simu-
lations is disabled on the side faces

• WavelengthDepIndex: Real and imaginary dielectric con-
stants are determined from the table of wavelength depen-
dent complex refractive indices.

• ActivateAllDispersiveMedia : Dispersive material model
parameters are provided in each of the material parameter
file. For each region, if the material is dispersive, the
dispersive model is automatically activated, if this flag is
set.

• CalculateAdjustedFields : Electric and magnetic fields
are calculated on the ‘Yee’ grid. Thus, the two are spatially
shifted by half spacing. If this flag is set, magnetic fields
are interpolated to be on the same location as electric fields.
Note, that this operation is computationally expensive,
therefore, must be used only when absolutely necessary.

5.3.2 setDomainBoundary
The command setDomainBoundary(...) takes the following argu-
ments -

1. Model: type of domain boundary to be set. Possible alternatives
are - CPML, RBC, and RBC.

2. Axes: axes at which the above specified boundary is to be set are
provided as a list of strings. Possible alternatives are - ”Xmin”,
”Xmax”, ”Ymin”, ”Ymax”, ”Zmin”, ”Zmax”.
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3. NumericParams: A python dictionary mapping parameter name
to its numeric value . The following numeric parameters can be
supplied.

• PMLLayers: number of PML layers at each boundary face.
• amax : maximum ”a” parameter of the ”CPML” model.
• kappamax: maximum κ parameter of the ”CPML” model.
• sigmamax: maximum σ parameter of the ”CPML” model.

4. Flags: An empty list. This parameter is currently unused.

5.3.3 resetDomainBoundaryToReflective
resetDomainBoundaryToReflective() command resets all the do-
main boundaries to ”reflective” domain boundaries.

5.3.4 addSource
The command addSource(...) takes the following arguments-

1. Name : Name of the source

2. NumericParams : A python dictionary mapping parameter name
to its numeric value . The following numeric parameters can be
supplied.

• Theta: Polar angle (deg)
• Phi: Azimuthal angle (deg)
• Wavelength: source wavelength (µm)
• EffectiveIndex: initial index of the mode-beam source
• NRise: rise time in number of periods
• Intensity: source intensity (W/m2)
• Delay: delay in number of periods
• BeamRadius: if ”GaussianBeam” source is used, specify

beam radius.
• Spread: if ”Dipole” source is used, specify standard devia-

tion of temporally Gaussian shape.
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3. StringParams: A python dictionaly mapping parameter name to
its string value. The following string parameters can be supplied.

• Type: Possible alternatives are ”PlaneWave”, ”Diople”,
”PEC”.

• BeamShape: Possible alternatives are ”ModeBeam”, ”Uni-
formBeam”, ”GaussianBeam”.

• Region: if ”PEC” is used, then specify the region name in
which PEC is active.

4. NumericListParams: A python dictionary mapping parameter
name to a list of numeric values. The following string parameters
can be supplied.

• WindowMin: Botton-left point of the source window as a
list of three numbers.

• WindowMax: Top-right point of the source window.

• DipoleCenter: Location of the dipole, for ”Dipole” source.

• WaveDir: Wave propagation direction for ”PlaneWave”
source

• DipoleDir: Dipole direction for ”Dipole” source.

5. StringListParams: A python dictionary mapping parameter
name to a list of strings. The following string parameters can be
supplied.

• Flags: Various flags can be listed e.g. ”UsePowerMethod-
ModeSolver”, ”ModeInBoundingBox”, ”VectorialModeE-
quation”.

5.3.5 removeSource

The command removeSource(...) takes name of the source as an
input parameter and deletes the source from the solver.



40 CHAPTER 5. PYTHON INTERFACE

5.3.6 addDispersiveMedium
The command addDispersiveMedium(...) takes the following argu-
ments.

1. Name : Name for reference.

2. NumericParams : A python dictionary mapping parameter name
to its numeric value. The following numeric parameters can be
supplied.

• NumberOfPoles : number of poles in the specified model.

3. StringParams : A python dictionaly mapping parameter name
to its string value. The following string parameters can be
supplied.

• Model: Possible alternatives are ”Debye”, ”Drude”, ”Lorentz”,
and ”Kerr”.

• Region: Name of the region in which this model is active.

4. NumericListParams : A python dictionary mapping parameter
name to a list of numeric values. The following parameters can
be supplied.

• TauPole: A list of pole τ(sec).
• DeltaEpsi: A list containing prefactor each of the poles.
• PoleFreq: A list of pole frequencies (Hz). It is internally

converted to rad/sec by multiplying with 2π.
• DampFact: A list of damping factors of the poles (Hz). It

is not converted to rad/sec.

If Kerr model is used, the following parameters for each of the
poles must also be provided instead.

• LorentzPoleFreq
• LorentzDamping
• LorentzDeltaEpsi
• DebyeTauPole



5.3. SETUP THE SOLVER 41

• DebyeDeltaEpsi
• KerrXi3
• InstantaneousKerrFactor
• OpticalPhononFreqency
• RamanBandwidth

5. StringListParams: Currently not used.

5.3.7 removeDispersiveMedium
The command removeDispersiveMedium() takes reference name of
the dispersive medium and deletes it from the solver.

5.3.8 addVisualiser
The command addVisualiser() adds various visualizations (e.g. point
sensor, movie) to the solver. It takes the following arguments.

1. Name : Name of the visualization instance.

2. Type : Visualization type. Possible alternatives are ”PointSen-
sor”, ”Movie”, ”TimeAverage”, ”PhaseCalculator”, ”Intensity-
Calculator”, and ”Detector”.

3. NumericParams : A python dictionary mapping parameter name
to its numeric value. Different numeric parameters are supplied
for different visualizers as given below.

• ”PointSensor” : None.
• ”Movie” : Intercept of the plane.
• ”TimeAverage” : The parameters TimeBegin, and TimeEnd

specify start- and end-time of the averaging, while TimeStep
specify n where averaging is done every nth step.

• ”PhaseCalculator”: Time at which phase is to be stored.
• ”IntensityCalculator” : Time at which intensity is to be

calculated and stored.
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• ”Detector” : StartTime start time of detection. StepX,
StepY, and StepZ specify n where probe every nth point
along each direction. TimeStep specify n where averaging
is done every nth step. Tolerance specifies minimum
fractional difference between the current and previous values
of the field below which the simulation will be terminated.

5.3.9 removeVisualiser

The command removeVisualiser() takes the name of the visualiser
and deletes it from the solver.

5.4 Solve FDTD System

The following commands begin the simulations.

5.4.1 portToGPU

The command portToGPU(...) ports the simulations to the first
available GPU (with GPU id = 0). If you wish to port to another
GPU, please give the GPU id as an argument. This command must
be run before solving the system on the GPU.

5.4.2 solveSystem

The command solveSystem(...) begins FDTD simulations on the
CPU. Make sure you did not run portToGPU command before running
this command.

5.4.3 solveSystemGPU

The command solveSystemGPU(...) begins FDTD simulations on
the GPU. Make sure you have run portToGPU command before running
this command.
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5.5 Retrieve visualizer data
Once the simulation is finished, the following commands help in
accessing the data stored by the visualizers. Note, that in all the
commands, the visualizer is identified by its name.

5.5.1 getPointSensorDatasetName
The command getPointSensorDatasetName(...) takes Name of the
point sensor object as an input and returns the names of all the datasets
whose data is recorded at the given point.

5.5.2 getTimeAverageDatasetName
The command getTimeAverageDatasetName(...) takes Name of the
time-average object as an input and returns the names of all the
datasets for which time-average is calculated.

5.5.3 getPhaseCalculatorDatasetName
The command getPhaseCalculatorDatasetName(...) takes Name of
the phase calculator object as an input and returns the names of all
the datasets whose phase is calculated.

5.5.4 getIntensityCalculatorDatasetName
The command getIntensityCalculatorDatasetName(...) takes Name
of the phase calculator object as an input and returns the names of all
the datasets whose phase is calculated.

5.5.5 getPointSensorData
The command getPointSensorData(...) takes Name of the point
sensor object as an input and returns time varying values of the
stored datasets as a 2D ”NumPy” array. Leading dimension is a time
dimension and trailing dimension stores dataset values for each of the
datasets and time.
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5.5.6 getTimeAverageData
The command getTimeAverageData(...) takes Name of the time-
average object as an input and returns time-averaged values of the
stored datasets at each vertex as a 2D ”NumPy” array. Leading
dimension has number of dataset entries and trailing dimension stores
dataset values at each vertex for each of the datasets.

5.5.7 getPhaseCalculatorAmplitude and getPhase-
CalculatorPhase

The commands getPhaseCalculatorAmplitude(...) and getPhaseCalculatorPhase(...)
take Name of the phase-calculator object as an input. They returns
values of amplitude and of phase of the stored datasets at each vertex
as a 2D ”NumPy” array. Leading dimension has number of dataset
entries and trailing dimension stores amplitude/phase dataset values
at each vertex for each of the datasets.

5.5.8 getIntensityCalculatorData
The command getIntensityCalculatorData(...) takes Name of the
intensity-calculator object as an input and returns values of the stored
datasets at each vertex as a 2D ”NumPy” array. Leading dimension
has number of dataset entries and trailing dimension stores dataset
values at each vertex for each of the datasets. Names of the stored
dataset are given by getIntensityCalculatorDatasetName function.



Appendix A

Notation and Acronyms

Acronyms

ABC Absorbing Boundary Condition
ADE Auxiliary Differential Equation

BC Boundary Condition
BPM Beam Propagation Method

MOSFET Metal-Oxide Semiconductor Field Effect Transistor
CPML Convolutional Perfectly Matching Layer

FDTD Finite Difference Time Domain

GPU Graphics Processing Unit

LHS Left Hand Side

RBC Periodic Boundary Condition
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PEC Perfect Electric Conductor
PML Perfectly Matching Layer

RBC Reflecting Boundary Condition
RHS Right Hand Side

ScMat Scattering Matrix

TE Transverse Electric
TFSF Total Field Scattered Field
TM Transverse Magnetic
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• July 2011 – August 2012
Research Assistant on “Mobility Modeling of Unstrained and
Strained Ge Channel pMetal-Oxide Semiconductor Field Effect
Transistor (MOSFET)” Department of Electrical Engineering,
IIT Bombay, Mumbai, India.


	1 Introduction
	1.1 Features
	1.2 Installation
	1.3 Licensing
	1.3.1 Purchasing the licenses
	1.3.2 Installation of SemiVi-activator
	1.3.3 License activation


	2 Theory of FDTD Solver
	2.1 FDTD Algorithm
	2.1.1 Calculating time-step

	2.2 Boundary conditions
	2.2.1 RBC
	2.2.2 PBC
	2.2.3 CPML

	2.3 Dispersive medium
	2.4 Sources
	2.4.1 Plane-wave source
	2.4.2 Dipole source


	3 Configuration File Structure
	3.1 File Section
	3.2 Solver Section
	3.3 Source Section
	3.4 Boundary Section
	3.5 Data Postprocessors
	3.5.1 Movie section
	3.5.2 PointSensor section
	3.5.3 TimeAverage section
	3.5.4 PhaseCalculator section

	3.6 Detector section
	3.7 Running FDTD Simulations
	3.8 Visualizing Results
	3.8.1 Average calculator
	3.8.2 Phase calculator
	3.8.3 Movie
	3.8.4 Point sensor


	4 Configuring FDTD Solver
	4.1 Keywords in File Section
	4.2 Keywords in Solver Section
	4.3 Keywords in Source section
	4.3.1 Plane-wave source
	4.3.2 Dipole source
	4.3.3 PEC source

	4.4 Dispersive section
	4.4.1 Kerr model

	4.5 Keywords in Boundary section
	4.6 Movie section
	4.7 PointSensor section
	4.8 TimeAverage section
	4.9 PhaseCalculator section
	4.10 Detector section

	5 Python Interface
	5.1 Import modules
	5.2 Constructors
	5.3 Setup the solver
	5.3.1 setGlobalParameters
	5.3.2 setDomainBoundary
	5.3.3 resetDomainBoundaryToReflective
	5.3.4 addSource
	5.3.5 removeSource
	5.3.6 addDispersiveMedium
	5.3.7 removeDispersiveMedium
	5.3.8 addVisualiser
	5.3.9 removeVisualiser

	5.4 Solve FDTD System
	5.4.1 portToGPU
	5.4.2 solveSystem
	5.4.3 solveSystemGPU

	5.5 Retrieve visualizer data
	5.5.1 getPointSensorDatasetName
	5.5.2 getTimeAverageDatasetName
	5.5.3 getPhaseCalculatorDatasetName
	5.5.4 getIntensityCalculatorDatasetName
	5.5.5 getPointSensorData
	5.5.6 getTimeAverageData
	5.5.7 getPhaseCalculatorAmplitude and getPhaseCalculatorPhase
	5.5.8 getIntensityCalculatorData


	A Notation and Acronyms
	Acronyms

	Curriculum Vitae

