USER GUIDE V-1

Structure Generator and Mesher
User Guide

AN

SemiVi LLC

Zollikon, Switzerland.

November 3, 2025

Contents

1

M1 Features o oo v oo 1
(.2 Installation| 2
......................... 3
[1.3.1 Purchasing the licenses| 3
[1.3.2 Installation of SemiVi-activator] 3
1L.3.3 License activationl 3

B Device G on File S | 5
[2.1 Config File structure] 5
2.1.1 Device sectionl 8
2.1.2 RefWin objects| 8
2.1.3 Region objects| 8
2.1.4 Doping objects| 9
2.1.5 Contact objects|. 9
2.1.6 MeshDef objects| 9

[2.2 Generating a device| 10
[2.3 Modifying the device| 10
[2.4 Generating a 3D device| 13
13 Device Generation with Python Script| 17
[3.1 Python Script File structuref. 17
B.1.1 Initializationl 20
3.1.2 Defining RetWin| 20
8.1.3 Defining Region| 21
8.1.4 Defining Doping Profile| 21

3

CONTENTS

8.1.5 Defining Contacts| 22
8.1.6 Defining Meshing rules|. 22
3.2 Generating a device| 22
3.3 Moditying the device] 23
Configuring RefWin Object| 25
4.1 1D segment|o 25
4 D DES| .« . e e e e e e e e e 26
4.2.1 Rectangle| o 0oL 26
% Polygon| 26
H23 Circd oo 26
4.2.4 DSE| . . . e e e e 26
4 D pes| 27
HE3T Cuboldl - . v v v oo oo 27
K phere| L 27
K psoid| 27
4.3.4 Cylinder or Cone| 27
M35 Convexhulllo oo 28
4.3.6 Polyhedron| 28
4.4 Python Intertace] 28
4.4.1 Position object| 28
4.4.2 Add RefWin to the devicel 29
4.4.3 Create RetWin Object| 29
4.5 Moditying RefWin object| 30
HE5T Generall . . .« v v v v v i 30
4.5.2 Shape Transtormation| 30
4.5.3 Boolean operation| 31
4.5.4 2D/3D shape editing] 34
4.5.5 2D to 3D shape conversion| 39
4.5.6 Trapezoidal 3D etch| 42
4.5.7 Saving the shapel 43
Configuring Regions, Contacts, and Doping| 45
.1 Region objects| 45
b.1.1 Python script intertace|. 46
5.2 Contact objects| 47
(.21 Thermal Contactl 47

CONTENTS 5

5.3 Doping profiles| 0oL 48
p.3.1 Constant doping profile|] 49
p.3.2 Gaussian doping profile] 49
b.3.3 Exponential doping profilef. 50
b.3.4 Linear doping profile| 50
b.3.5 Analytic doping profilef. 51
b.3.6 Python script interfacef. 52

[b.4 Editing device|. o oo 52
5.4, Mirror devicelo oL 52
b.4.2 Translate devicel 53
4.3 Stretch devieef.o 53

5.5 Saveand Loadl 53
5.5. 1 Structure - save and load STEPl 53
9.5.2 Regions - save and load| 54
9.5.3 Doping Definitions - save and load| 54
5.5.4 Mesh Definitions - save and loadl 54
©.5.5 Contact Definitions - save and loadl. 55
0.5.6 RefWins - save and load| 55

16 Configuring Mesh (eneration| 57

6.1 Mesh definition FEM or tensor-meshl 57

[6.2 Mesh settings in Triangle or Tetrahedral mesh|. 58

[6.3 Meshing Options| 59
6.3.1 Tensor Meshingl. 60
6.3.2 FEM Meshing] 60
6.3.3 Triangle Mesh Enginef 60
6.3.4 NetGen Mesh Enginel 60

[6.4 Python interface - mesh generation| 61
6.41 Createmeshl 64
6.4.2 NetGen mesh settings| 64
6.43 Clearmeshl 65
6.44 Clear structure and meshl 65

[6.5 Python intertace - mesh data retrieval| 65
6.5.1 Get region information|. 65
16.5.2 Tensor mesh-grid spacing| 66
6.0.3 Tensor mesh vertexidl 66
6.5.4 FEM mesh vertex coordinates. 66

6 CONTENTS

6.0.6 Voronoi volume|. 67

|7 Structure Generation from GDS Layout files| 69
[r.1 Config File| 69
7.2 GDSLayerDef object| 72
[7.2.1 Layer object|. 72

7.3 Region object| L. 73
[7.4 DopingDetf object| L. 73
I8 Graphical User-Interface] 7T
BI Tilemend« o v ovi o 78
811 Newl 78

8 Open|, 78

8.1.3 Import GDSFile 78

814 Savel 80

815 Save Asl 80
BI16 Save AsSTEPl 81
8.1.7 Export Python Script| 81
B18 Save Meshl. 0. 81

8.2 View-menul 81
8.2 Zoom-to-fitl 82
822 3Dl 82
823 Exl 82
824 Ruler 82
B25 Meshl. oo 82
......................... 82
8.3.1 Move or Copy|[. 83

832 Deletel L 83
........................ 83
8.3.4 Select shapes| L. 83
18.3.5 Boolean operations - Unite, Intersect, and Subtract| 84
8.3.6 Round Selected or Chamfer Selected| 84
B37T Strefchl 85
838 Offset] 85
8.3.9 Prism from 2D Shapel 85
8.3.10 Pyramid from 2D Shape|. 85
8.3.11 Revolve 2D shape| 86

8.4 Add-Shape-menu| Lo L 86

CONTENTS 7

8.4. egment|o 87
[8.4.2 Axis-aligned ‘Rectangle’] 87
BA3 _Cirdd oo 87
8.4.4 Regular Polygon| 87

8.4 Polygon| 87

8.4.6 Cuboidl 88

8.4) der|. L 88
........................ 88

8.4.9 Sphere/Ellipsoid| 88
8410 Prism|o o 88

8.4 P | 89
8412 Convex Hulll. 89
8.4.13 Convex Hull From Filel. 89
8.4.14 From lLast Selected. 89
[8.4.15 Load STL/BREP/IGES Files| 90

(8.5 Set Shape As...| 0oL, 90
8.5 Region| 90
852 Mesh Refinementl 90
BE3 Confactl 92
8.5.4 Doping Definition| 93

8.6 Create Meshl 93
[8.7 Shapes-Tabl oo 94
8.8 GDS Layout To Structure] 95
|IA° Notation and Acronyms| 97

ACTONyIS| e e e 97

Chapter 1

Introduction

The structure generator and mesher tool is used to create and mesh
semiconductor device structures for various optoelectronic simulations.
The user can create a config file which contains information on the
device structure, doping, and materials. This config file is parsed by
the software to create and mesh the device structure and store it in
hdf5 format. A xdmf script file is also generated for viewing the device
structure and mesh in paraview.

1.1 Features

The structure generator supports creating device with various common
shapes (see Chap. . These shapes are then meshed using different
types of meshers suitable for various device simulators provided.
Following mesh are supported.

o FEM-mesh: A triangular (2D devices) or tetrahedral (3D devices)
finite-elements based mesh. It is used for electrical drift-diffusion
transport simulations, and for dopant diffusion process simula-
tions.

o Tensor-mesh: A rectangular (2D devices) or cubic (3D devices)
grid based mesh. It is used for optical [Finite Difference Time]
[Domain (FDTD)|simulations, [Beam Propagation Method (BPM)

2 CHAPTER 1. INTRODUCTION

simulations. It is also used for electrical [Quantum Transport
(QT)|simulations with[Non-equilibrium Green’s Function (NEGF)
formalism.

e Triangle mesh: An external mesh engine which meshes 2D device
with triangular finite-elements.

e NetGen mesh: An external mesh engine which meshes 3D device
with tetrahedral finite-elements.

Since the structure generation and meshing have been separated,
the same structure config file can be conveniently used to create any
of the meshes by specifying arguments.

The structure generator also supports importing masks polygons
from GDS mask files (Chap. and use them to define regions or
analytic doping profiles.

1.2 Installation

SemiVi currently supports software installation on various Linux
distributions. The software installer is available in Debian package
(*.deb file) and in RPM format (*.rpm file).

Download the installer on the local machine. The installer file
named mesher_amd64.deb will appear in the Downloads directory.
Go to the directory using cd command. Use the following command
to install the Mesher from the installer.

>> sudo apt install ./mesher_amd64.deb

Alternately, one may use dpkg to install the software and use apt
to install missing dependencies as follows.
>> sudo dpkg -i ./mesher_amd64.deb

>> sudo apt install -f

You need to have root access to install the software on your
machine.

1.3. LICENSING 3

1.3 Licensing

Two types of licenses can be purchased for SemiVi Mesher.

Node-locked licenses enable unlimited number of simultaneous
executions of the Mesher on the client machine. The node-locked
license limits the usage of the Mesher only to the machine on which
the license is activated.

With server licenses, the Mesher can be run on any of the machines
in the client organization on which the server license is activated.
However, only the specified number of simultaneous executions are
possibie at a time.

1.3.1 Purchasing the licenses

The clients can place order for any of the above licenses on SemiVi
website |(https://www.semivi.ch/sales) or by contacting our sales-
person.

We will process the request and send the license files by email. The
license files need to be activated on the desired machines using the
license key which is emailed separately using the following command.

1.3.2 Installation of SemiVi-activator

The license file must be activated on the desired computer before use.
For that purpose, download the installer semivila_amd64.deb file on
the local machine and install it as follows.

>> sudo apt install ./semivila_amd64.deb

1.3.3 License activation
To activate the license file, please run the following command.
>> semivila -a File.lic <Server|NodeLocked>License.lic\\

Replace File.lic with the your license file, and use appropriate
name for the activated file. You will be prompted to input the
16 digit license key. A successful activate of the license file will
generate the activated license file. Copy the activated license file to the

https://www.semivi.ch/sales

4 CHAPTER 1. INTRODUCTION

/opt/semivi/licenses/ folder and rename it to ServerLicense.lic
or NodeLockedLicense.lic for server and node-locked licenses respec-
tively. If you have more than one license files, please delete the older
expired license files. If you wish to keep more than one active license
files, you can also name the license files as <i>NodeLockedLicense.lic
where <i> could be from 0 to 49. For ex. 49NodeLockedLicense.lic
or 49ServerLicense.lic. The program will read the license files and
lock the first available license. All the target users must have read
rights on the license file.

User-guides of all the software provided by SemiVi are stored at
the location /opt/semivi/userguides/.

Tutorials of all the software provided by SemiVi are stored at the
location /opt/semivi/tutorials/mesher.

Chapter 2

Device Generation File
Structure

The structure generator and mesher is provided with every software
package of SemiVi. The structure generator and mesher work together
to create a device and passes it to the simulator. A standalone ‘Mesher’
program can also be invoked to create and save the device in hdf5
format and view it in paraview using xdmf file. Here, the standalone
program is used to create the device using the following command -
>> Mesher str diode_str.cfg

In the above command, the word after Mesher is the name of the
program to be executed (in this case — str). The program name is

followed by the device structure generation file name (in this case —
diode_str.cfg).

2.1 Config File structure

A sample structure file which creates a 2D pn-diode is provided below.

Device:

6 CHAPTER 2. DEVICE CONFIG FILE

Name = "Diode";
MeshType = "FEM";
Simulation = "DD";

3

RefWin*RefSi:

{

Position: ([-1.0, -0.2, 0.], [1., 0.2, 0.1);
Shape = "Rectangle";

X

RefWin*RefCathode:

{

Position: ([0.999, -0.25, 0.], [1.001, 0.25, 0.]);
Shape = "Rectangle";

by

RefWin*RefAnode:

{

Position: ([-0.999, -0.25, 0.], [-1.001, 0.25, 0.]1);
Shape = "Rectangle";

}

RefWin*RefPDoping:

{

Position: ([-1.001, -0.25, 0.1, [0., 0.25, 0.]1);
Shape = "Rectangle";

X

RefWin*RefNDoping:

{

Position: ([0.0, -0.25, 0.], [1.001, 0.25, 0.]1);
Shape = "Rectangle";

X

Region*RegSi:
{
RefWin = ["RefSi"];

2.1. CONFIG FILE STRUCTURE 7

Material = "Silicon";
//MaxEdgeLength = 0.05;

}

MeshDef*MDefSiTop:

{

RefWin = "RefAll";

Xarg: [0., 0.0001, 0.05, 1.3]
Yarg: [0., 0.025, 0.025, 1.]
Zarg: [0., 0.025, 0.025, 1.]
}

DopingDef*Ndoping:

{

RefWin = "RefNDoping"

Type = "Constant"
Concentration = 5E16

Dopant = "Phosphorus"

}

DopingDef*Pdoping:

{

RefWin = "RefPDoping";

Type = "Constant"; // "Constant", "Linear", "Exponential", "Analytic
Concentration = 5E16;

Dopant = "Boron";

}

Contact*Cathode:

{

RefWin = ["RefCathode"]

}

Contact*Anode:

{

RefWin = ["RefAnode"]
}

8 CHAPTER 2. DEVICE CONFIG FILE

The above structure generation file is composed of various sections
which define different objects of the device. In each of the object
names, string before *’ gives the object type, whereas the string after
* specifies the object name. Various keywords in each of the object
and their functionality is shortly described below. Except for the File
section, all the objects can be multiply define in a config file. However,
each object must have a different name. If two objects of the same
name are defined, the parser will give an error.

2.1.1 Device section

There can be only one Device section in the file. Name sets the device
name. The generated mesh is stored in ‘<Name>_str.h5’ file. A
script file ‘<Name> _str.xdmf’ is generated for viewing the device in
paraview. MeshType sets that internal ‘FEM’ meshing engine to be
used. Simulation provides the type of simulation to be performed
using the device.

2.1.2 RefWin objects

Each RefWin object creates a specific shape set by Shape using the
points defined as a (...) list of three floats in [...] bracket. Number
of points and their meaning varies with the shape. An axis-aligned
Rectangle shape is defined by two points. They form two diagonally
opposite points of the rectangle object. A ‘RefWin’ has no meaning
on its own, unless it is referenced by any other object such as ‘Region’
or ‘MeshDef”. One RefWin object can be referenced by many Region,
Doping, Contact, or other objects.

2.1.3 Region objects

Each Region object defines a region with a specific material. It consists
of a comma separated list of ‘RefWin’ names which constitute the
region is provided with RefWin keyword. Material sets material of
the region. Volume encompassed by the RefWins is a part of the
region. Note, that the order in which the region objects are defined
is important. If there is an overlap between two regions, the region
defined latest in the config file gets precedence.

2.1. CONFIG FILE STRUCTURE 9

2.1.4 Doping objects

Each Doping object defines a new doping profile in the region. The
doping object is linked to a RefWin object. The doping profile is
defined by Type. Here, all the doping definitions have a constant
profile. Concentration sets concentration of ‘constant’ profile. This
means, all the vertices inside the RefWin are set to constant profile.
More than one doping objects can overlap. In that case, doping
concentrations are added in the overlap region. Dopant name is set by
Dopant.

2.1.5 Contact objects

Each Contact object defines a contact which has the same name as
name of the object. It contains a list of comma separated list of
‘RefWin’ names. All the vertices inside each of the RefWins are set to
this contact object. In case of an overlap, the contact defined latest in
the config file gets precedence.

2.1.6 MeshDef objects

FEach MeshDef object sets parameters of the mesh generator program
specific to the volume confined in the RefWin named RefWin. It also
specifies the parameters which are used in defining grid along x, y, and
z axis using the keyword X, Y, and Z. The grid are defined as follows.

Grid parameters

Each of the X, Y, and Z grid definitions contains minimum grid-point
spacing set by Xarg[1], maximum grid-point spacing set by Xarg[2].
The grid points along that axis have spacing between the these values.
If Xarg[3] factor is more than 1.0, then minimum grid spacing is
multiplied with Xarg[3] factor for every subsequent grid spacing
starting from grid point at Xarg[0].

10 CHAPTER 2. DEVICE CONFIG FILE

2.2 Generating a device

In this section, the above config file is used to generate the pn-diode
structure shown in Fig. The structure is created using the
command

>> Mesher str diode_str.cfg.

The above command will generate ‘<Name>_str.h5’ file containing
the mesh data, together with a script file ‘<Name> str.xdmf’ for
visualization. If Paraview is installed on the machine, the xdmf file
can be opened using the following command
>> paraview Diode_str.cfg.

Once paraview is opened, see the Pipeline Browser window.
Highlight Diode_str.xdmf file and click the button Apply below
in Properties tab. You will see the device with spatial doping
concentration. Now, find the drop-down menu written Surface and
change it to Surface With Edges. Mesh will be displayed as shown in
Fig. Changing DopingConcentration to Solid Color shows
the mesh as in Fig. Now, select VertexContactMap instead of
DopingConcentration. Also, open Color Map Editor and select the
option Interpret Values As Categories. Vertices will be colored
as per the contact they belong to (see Fig. . Vertices which
belong to Anode are colored green (for id 1), while those which belong
to Cathode are colored red (for id 0).

2.3 Modifying the device

Copy the above config file to any text editor and modify the mesh
definition as follows.

MeshDef*MDefSiTop:

{
RefWin = "RefAll";
Xarg: [0., 0.0001, 0.05, 1.3
Yarg: [0., 0.025, 0.025, 1.]
Zarg: [0., 0.025, 0.025, 1.]

]

2.3. MODIFYING THE DEVICE 11

(a) Meshing

c
ke
=
s}
=
c
[}
[}
c
O
Q
[0)
£
Q
o
[a)]

(b) Doping

(c) Contacts

Figure 2.1: (a) Meshing generated by running the diode config file.
(b) Doping concentration set by the config file. (c) Contact information
set by the config file. Vertices are mapped to the contact they belong
to. -1’ refers to the Semiconductor regions, ‘-2’ refers to the insulator
regions, and ‘-3’ refers to the metal regions outside of any contact.

12 CHAPTER 2. DEVICE CONFIG FILE

(a) Meshing

I
O
o
o
i
o

2e+16
0
-2e+16

-56.0e+16

9
=
S
=
c
[0}
0
c
o}
Q
o)
£
[o
o}
[a)

(b) Doping

Figure 2.2: (a) Meshing generated by running the modified diode
config file. (b) Doping concentration set by the modified config file.

Run the meshing command.

>> Mesher str diode_str.cfg.

Mesh will be generated using the modified settings as shown in
Fig Now, modify doping of the device by changing the doping
RefWin as follows.

RefWin*RefPDoping: {
Position: ([-1.001, -0.25, 0.], [0.4, 0.25, 0.1);
Shape = "Rectangle";

3

RefWin*RefNDoping: {
Position: ([0.4, -0.25, 0.], [1.001, 0.25, 0.1);
Shape = "Rectangle";

b

Rerun the meshing command. View the doping concentration. Now
p-n junction is shifted to the right by 0.4pum as shown in Fig.
In this way, the meshing or doping can be modified. As an additional
exercise, change the doping setting to the following.

2.4. GENERATING A 3D DEVICE 13

Figure 2.3: Meshing generated by running the modified diode config
file by adding an addition refinement horizontally.

MeshDef*MDefSiTop:

{
RefWin = "RefAll";
Xarg: [0., 0.0001, 0.05, 1.3
Yarg: [0., 0.025, 0.025, 1.]
Zarg: [0., 0.025, 0.025, 1.]

]

3

Rerun the mesher and view the generated mesh. By changing Xarg[0]
from 1.0 to 1.7, a refined mesh is added horizontally as shown in

Fig.

2.4 Generating a 3D device

Copy the config file to another file and open it in a text editor. Edit
all the RefWin objects in the file as follows.

RefWin*RefSi: {
Position: ([-1.0, -0.2, -0.2], [1., 0.2, 0.2]);
Shape = "Cuboid";

}

In the above snippet, z-coordinate of the first point in Position is
changed from 0 to -0.2 and that of the second point is changed from
0 to 0.2. Also, its Shape was changed from Rectangle to Cuboid.
Same changes are made to all the RefWin objects in the config file.
This changes the diode from 2D structure to a 3D structure. The 3D
structure can be meshed using the same command.

14 CHAPTER 2. DEVICE CONFIG FILE

>> Mesher str diode_str.cfg.

Resulting structure is stored in ‘Diode_str.h5’ file and the script is
saved in ‘Diode_str.xdmf’ file. It can be opened in paraview. Same
steps as given in Section [2.2] can be followed to view mesh as in

Fig. [2.4(a)l doping as in Fig. [2.4(b)| and contact information as in
Fig. 2.A(0)

15

2.4. GENERATING A 3D DEVICE

(a) Mesh

uolpluasuoDHBuidoq
O

(b) Doping

dPNODIUODXSLOA

Contacts

(c)

(a) Meshing generated by running the modified diode

Figure 2.4:

(b) Doping concentration set by the

Contact information set by the config file.

)
—~
3
+
&)
=
~
+
wn
a
(ap)
=
20
B
<9
SERT
B0 o
N
S g
SRS
o O

Chapter 3

Device Generation with
Python Script

The structure generation and meshing can also be performed using a
python script. This is performed by device library in python which
interfaces python functions with the respective functions of the ‘Mesher’
program. If python interface for ‘Mesher’ is installed, any file containing
python script to generate the device can be run like any other python
file.

>> python diode_str.py

3.1 Python Script File structure

A sample python script file which creates a 2D pn-diode is provided
below. The script produces the structure identical to that created by
the config file in Sec.

import mesher as m

define device object
dio = m.device ("Diode", "FEM", "STR", 1)

17

18 CHAPTER 3. DEVICE PYTHON SCRIPT

if not dio.lockLicense () ==
print ("Could not fetch licenses.")

exit (O
xmin = -1.
xmax = 1.
xmid = O.
ymin = -0.2
ymax = 0.2

define RefWins
dio.setRefWin (Name="RefAll", Shape="Rectangle",
Position=[m.position(xmin, ymin, 0.),
m.position(xmax, ymax, 0.)],
NumericParams={},NumericListParams={})

dio.setRefWin (Name="RefSil", Shape="Rectangle",
Position=[m.position(xmin, ymin, 0.),
m.position(xmid, ymax, 0.)],

NumericParams={},NumericListParams={})

win2 = m.refwin("RefSi2","Rectangle",
[m.position(xmid, ymin, 0.),
m.position(xmax, ymax, 0.)]1,{},{})

win2.saveSTL();
dio.addRefWinToDevice (win2)

dio.setRefWin (Name="RefCathode", Shape="Rectangle",
Position=[m.position(xmin-1E-3, ymin-1E-3, 0.),
m.position(xmin+1E-3, ymax+1E-3, 0.)],
NumericParams={},NumericListParams={})

dio.setRefWin (Name="RefAnode", Shape="Rectangle",
Position=[m.position(xmax-1E-3, ymin-1E-3, 0),
m.position(xmax+1E-3, ymax+1E-3, 0.)],
NumericParams={},NumericListParams={})

3.1. PYTHON SCRIPT FILE STRUCTURE 19

dio.setRefWin (Name="RefPDoping", Shape="Rectangle",
Position=[m.position(xmin, ymin, 0.),
m.position(xmid, ymax, 0.)],
NumericParams={},NumericListParams={})

dio.setRefWin (Name="RefNDoping", Shape="Rectangle",
Position=[m.position(xmid, ymin, 0.),
m.position(xmax, ymax, 0.)],
NumericParams={},NumericListParams={})

define Regions
dio.setRegion (Name="RegSil", RefWinName="RefSi",
Material="Silicon", MeshingParams={})

dio.addRegion (Name="RegSi2", refwin=win2,
Material="Silicon", MeshingParams={})

define Meshing

dio.setMeshDef (Name="MDefAll", RefWinName="RefAll",
Xarg=[0., 1E-4, 0.05, 1.3],
Yarg=[0., 0.025, 0.025, 1.],
Zarg=[0., 0.025, 0.025, 1.],
FEMDopingGradientCutoff=1E30)

define Doping

dio.setDopingDef (Name="Ndoping", RefWinName="RefNDoping",
Type="Constant", Concentration=5E16,
DopantSpecies ="Phosphorus")

dio.setDopingDef (Name="Pdoping", RefWinName="RefPDoping",
Type="Constant", Concentration=5E16,

DopantSpecies ="Boron")

define Contacts
dio.setContact (Name="Anode", RefWinName="RefAnode")

dio.setContact (Name="Cathode", RefWinName="RefCathode")

20 CHAPTER 3. DEVICE PYTHON SCRIPT

create Mesh
dio.createDeviceMesh ()

save Mesh
dio.saveMeshData ()

First line of the python file import device as dev imports device
library which has the device object called Device. The ‘device’ object
contains all the procedures (python equivalent of functions) that are
used to create a device structure and mesh it. Once a ‘device object’ is
instantiated, these procedures can be invoked on the device instance as
shown on subsequent lines of the file. Usage of each of the procedure
is described below.

3.1.1 Initialization

dio = dev.Device ("Diode", "FEM", "STR", 1) line instantiates
a device object ‘dio’. This is similar to File section in config file and is
described in Subsec. It takes device name, mesh type, simulation
type as input which correspond to Name, MeshType, and Simulation
in File section. The last input is an integer 0 or 1 which tell the
simulator if the object will be used for simulation (‘1’) or only for
structure and mesh generation (‘0’). If ‘0’, then the generator does
not calculate coupling element matrix which saves computation time.

3.1.2 Defining RefWin

dio.setRefWin (...) procedure is invoked on ‘dio’ object which adds
a ‘RefWin’ to the object. Inputs are similar to the RefWin section in
config file as described in Subsec.[2.1.2] Note, that Position argument
takes coordinates in the form of a ‘numpy’ 2D array. The leading
dimension has the size of number of points and the trailing dimension
has the size of 3, corresponding to X, Y, and Z coordinates of the
points, as shown in the above file. Note, that the above procedure
adds RefWin to the device.

3.1. PYTHON SCRIPT FILE STRUCTURE 21

Also, the name of the RefWin is unique to it. Adding multiple
RefWins with the same Name gives an error message and the RefWin
is not added.

A RefWin can be referenced by many Region, Doping, Contact, or
other objects using its unique name.

Alternately, a RefWin instance is created on the line win2=m.refwin(...).
It is named win2. This RefWin exists outside the device definition.
This RefWin can be added to the device dio using the procedure,
dio.addRefWinToDevice(...). Once added to device, this RefWin
can be referred by its name while adding Region, etc.

Various geometric operations can be performed on the RefWin
object, e.g. rounding edges, boolean operations, sweeps, etc. The
RefWin object is stored as an STL file (<RefWinName>.stl) using
the procedure win2.saveSTL(). The STL file can be visualized using
paraview to check geometric correctness.

3.1.3 Defining Region

dio.setRegion (...) procedure is invoked on ‘dio’ object and adds a
‘Region’ to the object. The procedure takes inputs similar to the Region
object in config file as described in Subsec. 2:1.3] This procedure
accepts the name of only one ‘RefWin’ as input.

If the given region is composed of a union of multiple ‘RefWins’,
then setCompositeRegion (...) procedure can be invoked to add
such a region.

Alternately, dio.addRegion(...) procedure can be invoked to
create a region from an external RefWin object.

3.1.4 Defining Doping Profile

A doping profile can be added to the ‘dio’ object using dio.setDopingDef (...)
function. It takes inputs similar to the DopingDef object in config
file as explained in Subsec. 2.1.4 Additional input parameters in this
function are described in the next chapters.

Alternately, dio.addRegion(...) procedure can be invoked to
create a region from an external RefWin object.

22 CHAPTER 3. DEVICE PYTHON SCRIPT

3.1.5 Defining Contacts

A contact is added to the ‘dio’ object by using dio.setContact (...)
function. It takes two inputs, namely, the name of the contact (Name)
and the ‘RefWin’ associated with it (RefWin). If a contact already
exists with the given name, the RefWin is added to the existing contact,
instead of creating a new one.

Alternately, dio.addContact(...) procedure can be invoked to
create a contact from an external RefWin object.

3.1.6 Defining Meshing rules

The procedure dio.setMeshDef (...) adds a new meshing rule to
the existing meshing rules of ‘dio’. This new meshing rule is applied to
the volume confined only in the RefWin named RefWin. The procedure
takes input parameters similar to those defined in Subsec. 2.1.6] The
parameters which define the grid spacing along x, y, and z axis are set
using Xarg, Yarg, and Zarg as a list of four numbers as follows
Xarg=[0., 0.0004, 0.04, 1.15] The four numbers are cen, minspacing,
maxspacing, incr in the same order.

Alternately, dio.addMeshDef (...) procedure can be invoked to
create a new meshing rule which is valid inside an external RefWin
object.

3.2 Generating a device

In this section, the above python script is used to generate the pn-
diode structure shown in Fig. 2.} The structure is created using the
command

>> python diode_str.py.

The above script will generate ‘<Name>_str.h5’ file together with a
script file ‘<Name> str.xdmf’. If Paraview is installed on the machine,
the xdmf file can be opened using the following command
>> paraview diode_str.xdmf

The above command will open paraview. The same steps as
described in Sec. [2.2] can be followed. Generated mesh and doping
profile will look exactly as shown in Fig. [2.1(a)| and in Fig. [2.1(b)]

3.3. MODIFYING THE DEVICE 23

respectively. Contact vertices set by the python file also look as shown

in Fig.

3.3 Modifying the device

Copy the above python file to any other file and open it in any text
editor. Modify the mesh definitions as follows.

dio.setMeshDef (Name="MDefSi", RefWin="RefSi",

Xarg=[0.4, 1E-4, 0.05, 1.3], Yarg=[0., 0.025, 0.025, 1.],

Zarg=[0., 0.025, 0.025, 1.1)

Perform meshing again using the following command.
>> python diode_str.py

Using the modified settings will generate mesh exactly as shown in
Fig Now, modify doping of the device by changing the doping
RefWin as follows.

dio.setRefWin (Name="RefPDoping", Shape="Rectangle",
Position=np.array ([[xmin, ymin, 0.], [xmid+0.4, ymax,

dio.setRefWin (Name="RefNDoping", Shape="Rectangle",
Position=np.array ([[xmid+0.4, ymin, 0.], [xmax, ymax,

Rerun meshing using the above command. View the doping concen-
tration. Now p-n junction is shifted to the right by 0.4um as shown in
Fig. In this way, the meshing or doping can be modified using
python interface.

0.11»

0.11))

Chapter 4

Configuring RefWin
Object

A RefWin in structure generator can be defined in a config file using
the following script.

RefWin*RefSi:

{

Position: ([-1.0, -0.2, 0.], [1., 0.2, 0.1);
Shape = "Rectangle";

}

Name of the RefWin is specified by the string after ‘RefWin*. Position
argument takes a number of points as inputs each of which is specified
by an array of three floating points. The number of points to be
specified and their meaning depends on the Shape of the RefWin.
Various ‘shapes’ which are recognized by the structure generator are
listed below.

4.1 1D segment

A segment is set by providing two points in the Position argument
and setting Segment as shape. It can be axis aligned or slanted. In a

25

26 CHAPTER 4. REFWIN

2D device, care must be taken to set z coordinate of both the points
to 0.

4.2 2D shapes

Note, that in a 2D device all the RefWins must be in XY plane only.
2D devices in YZ or XZ coordinates are not supported at the moment.

4.2.1 Rectangle

An axis-aligned Rectangle is set by specifying the two endpoints of
any one of its diagonals in Position argument. These two points must
have either x, y, or z coordinate same. The rectangle can lie in XY,
YZ, or XZ planes, depending on whether all the points have the same
z-coordinate (XY plane), x-coordinate (YZ plane), or y-coordinate
(XZ plane).

4.2.2 Polygon

A Polygon shape is be defined by listing point coordinates of all
the vertices of the polygon in counterclockwise or clockwise order in
Position argument. All the points of the polygon must be co-planar,
else the program outputs error and exits.

4.2.3 Circle

A Circle shape is set by specifying its center point in Position
argument and passing its radius as an additional argument as follows:
Radius=0.5. The circle object can only be defined for a 2D device.
Therefore, it can only lie in XY plane.

4.2.4 Ellipse

An Ellipse shape is set by specifying the point of intersection of
short and long diameter as the first point in Position argument. Also,
one of the endpoints of the long diameter is set as second point in
Position. Short radius is set by Radius argument. The ellipse object

4.3. 3D SHAPES 27

can only be defined for a 2D device. Therefore, it can only lie in XY
plane.

4.3 3D shapes
4.3.1 Cuboid

An axis-aligned Cuboid is set by specifying the two endpoints of any
one of its diagonals in Position argument. These two points must
have different x-,y-, or z- coordinates, else the program gives an error
and exits.

4.3.2 Sphere

A Sphere shape is set by specifying its center point in Position
argument. Its radius is set by Radius argument.

4.3.3 Ellipsoid

An Ellipsoid shape is set by specifying the point of intersection of
short and long diameter as the first point in Position argument. Also,
one of the endpoints of the long diameter is set as second point in
Position. Short radius is set by Radius argument. Currently, only a
protruding ellipse can be specified.

4.3.4 Cylinder or Cone

To set Cylinder or a Cone, arguments of the elliptical shape (or
circular shape) at the base of these shapes must be set. They are
set by specifying the point of intersection of short and long diameter
of the base ellipse as the first point in Position argument and one
of the end points of the long diameter as second point in Position.
Short radius of the base ellipse is set by Radius argument. If the short
radius is not set or is equal to the long radius (distance between first
and second point in Position), then the base is circular. Point at
the top of the cone or the center-point at the top of the cylinder is
specified as the third point in Position.

28 CHAPTER 4. REFWIN

4.3.5 Convex hull

A polyhedron which is a ‘convex hull’ of all the points specified in
Position argument is created by setting the shape as ConvexHull.
All the points provided in Position must not be co-planar.

4.3.6 Polyhedron

A Polyhedron is a special shape, as it does not accept Position as
an argument. Instead, it is set by specifying all of its faces as a list of
2D RefWins. This means, that all the faces of the polyhedron must be
defined as 2D RefWins beforehand. Names of the RefWins which form
its faces are provided as a comma separated list to the SurfaceRefWin
argument.

4.4 Python Interface

4.4.1 Position object

mesher.position(...) constructor creates an instance of a position,
when x, y, z coordinates are supplied. A list of points specified by the
list of positions is input as an argument while creating a RefWin in
python interface. Following mathematical operations can be directly
performed on the position objects.

e XO,YO,ZO): returns x,y,z coordinates of the point.

e Binary operations +,-,*,/ : Binary operations are performed

component-wise

e Assignment operations =+,:—,:*,:/ : In-place component-
wise binary operations.

e (in)equality ==, |=: Two points are equal if each of the x,y,z
coordinates of the two points are less than 107> away.

o Scalar operatioms *, *=, /, /= : Operation of a point with a
scalar.

Note: The position object can also be used to specify ”direction”
vector.

4.4. PYTHON INTERFACE 29

4.4.2 Add RefWin to the device

setRefWin (...) procedure is invoked on the device object adds a
‘RefWin’ to the device. Inputs are similar to those listed above. Note,
that Position argument takes coordinates in the form of a list of
position instances. The leading dimension has the size of number of
points and the trailing dimension has the size of 3, corresponding to X,
Y, and Z coordinates of the points. For example, a rectangular RefWin
is added to the device object ‘dio’ using the following command in
python script.

dio.setRefWin (Name="RefSi", Shape="Rectangle",
Position=[m.position(-1.,-1.,0.), m.position(1.,1.,0.)],
NumericParams={},NumericListParams={})

Also, the name of the RefWin is unique to it. Adding multiple
RefWins with the same Name gives an error message and the RefWin
is not added.

4.4.3 Create RefWin Object

mesher.refwin(...) constructor creates a new RefWin when the
following arguments are provided.

e Device: Device object (e.g. dio).

o Name: Name of the RefWin.

o Shape: RefWin shape.

o Position: A list of points as a list of positions.

o NumericParams: Python dictionary mapping parameter names
and their values in number.

e NumericListParams: Python dictionary mapping parameter
names and their values in a list of numbers.

o BaseNormalAxis: Axis normal to the base. Accepts ‘X', Y’, or
‘Z’ as arguments. Default ‘Y’

Various operations can be performed on the RefWin object(s).
They are described in the next section.

30 CHAPTER 4. REFWIN

4.5 Modifying RefWin object

An object of a RefWin is created by win = mesher.refwin(...).
Following operations can be applied on the object.

4.5.1 General
getDim

win.getDim() procedure returns dimension of the shape.

getName

win.getName () procedure returns name of the RefWin.

setName

win.setName ("Name") procedure sets name of the RefWin.

isEmpty

win.isEmpty () procedure returns if the RefWin is empty or not.

4.5.2 Shape Transformation
Translation

win.translateBy(position(x,y,z)) procedure translates the Re-
fWin shape in 2D/3D space by position(x,y,z). The translation
vector is provided as a position object.

ﬁnew = ﬁ+ ¢ (41)

Here, p and e are the current and new positions of the vertex. ¢ is
the user-given translation vector.

4.5. MODIFYING REFWIN OBJECT 31

Scaling

win.scaleBy(val, position(x,y,z)) procedure scales the RefWin
shape in 2D/3D space by a factor val. Scaling is performed relative
to the point given by position(x,y,z) object.

ﬁnew =S5 (ﬁf 6) (42)

Here, p'and e are the current and new positions of the vertex. ¢ is
the user-given point, and s is the scaling factor.

Rotation from a point to another

win.rotateFromTo(position(x1l,yl,z1),position(x2,y2,22)) pro-
cedure rotates the RefWin shape in 2D /3D space by the shortest route
from position(x1l,yl,z1) to position(x2,y2,z2) about the shape
center.

Rotation around an axis

win.rotateAroundAxis(angle,position(xl,yl,z1)) procedure ro-
tates the RefWin shape in 2D/3D space by angle degrees about an
axis along the direction position(x1l,y1,z1).

Rotation around an axis at point

win.rotateAroundAxisAtPoint (angle,position(xl,yl,z1),position(x2,y2,z:
procedure rotates the RefWin shape in 2D /3D space by angle degrees
about an axis specified by position(x1,y1,z1) sp.

Shape mirroring

win.mirrorByPlane (position(x1,y1,z1)) procedure mirrors the Re-
fWin shape in 2D/3D space. Mirror-plane is defined by the plane-
normal position(xl,yl,z1) passing through the shape center.

4.5.3 Boolean operation

Various boolean operations can be performed on a pair of RefWin
objects. Here, these operations are applied on a RefWins winl and

32 CHAPTER 4. REFWIN

(a) shape of “winl” (b) shape of “win2”

Figure 4.1: Shapes of the RefWins (a) “winl” and (b) “win2”.

win2 which are created by a python script given below. The original

RefWins are shown in Fig. [4.1(a)|and Fig.

import mesher as tm

poly = [tm.position(0., 0.,0.),tm.position(3.,0.,0.),
tm.position(4.,1.,0.),tm.position(2.,4.,0.),
tm.position(0.,5.,0.)]

winl = tm.refwin("RefCyl1","Polygon",poly,{},{})

poly2 = [tm.position(2., 0.,0.),tm.position(5.,0.,0.),
tm.position(6.,1.,0.),tm.position(5.,4.,0.),
tm.position(2.5,3.,0.)]

win2 = tm.refwin("RefCyl2","Polygon",poly2,{},{})

Add

win.add (refwin=win2) procedure creates a union of the geometric
shapes of win2 and win, and assigns the new shape to win2.

winl.add(refwin=win2)

RefWin "winl” modified by the above line is shown in Fig. [£.2]

4.5. MODIFYING REFWIN OBJECT 33

Figure 4.3: Shape of RefWin “win2” after subtracting “winl” from it.

Subtract

win.subtract(refwin=win2) procedure subtracts the geometric shape
of win2 from the geometric shape of win, and assigns the new shape
to win2. The new shape contains all the points which are present in
win but not in win2.

win2.subtract (refwin=winl)

RefWin ”"win2” modified by the above line is shown in Fig.

Clip

win.clip(refwin=win2) procedure creates an intersection of the
geometric shape of win2 from the geometric shape of win, and assigns

34 CHAPTER 4. REFWIN

Figure 4.4: Shape of RefWin “winl” after clipping with “win2”.

the new shape to win2. The new shape contains all the points which
are present in both win2 and win.

winl.clip(refwin=win2)

RefWin "winl” modified by the above line is shown in Fig. [£:4]

overlaps

win.overlaps(refwin=win2) procedure returns true if the geometric
shape of win?2 overlaps with that of win.

Note: Boolean operations can be performed on the two RefWin
objects of the same dimension (2D/3D). Performing boolean operation
on a 3D RefWin with a 2D RefWin and vice-versa may lead to an
undefined shape.

4.5.4 2D/3D shape editing

Various procedures useful for modifying a 2D /3D RefWin are listed
below. They are applied on the RefWin “winl” shown in Fig. 4.1(a)
Chamfering

win.chamferAt ([position(x1l,y1,z1),...]1,[r1,...],True/False)
procedure chamfers the edges of the RefWin on which the points

4.5. MODIFYING REFWIN OBJECT 35

Figure 4.5: Shape of RefWin "winl” after applying chamfering
operation.

specified by position list lie. For each of the points, chamfer radius
is specified by a list of floats. If the point coincides with the shape
corner, then all the edges connected to the corner are rounded. If
the last argument is set to true, then all the edges of the shape are
chamfered.

winl.chamferAt([tm.position(0., 0.,0.)1,[1.0])

RefWin "winl” modified by the above line is shown in Fig. [{.5]

Rounding

win.roundAt ([position(x1l,y1,z1),...]1,[r1,...],True/False) pro-
cedure rounds the edges of the RefWin on which the points specified

by position list lie. For each of the points, rounding radius is specified

by a list of floats. If the point coincides with the shape corner, then all
the edges connected to the corner are rounded. If the last argument is

set to true, then all the edges of the shape are chamfered.

winl.roundAt ([tm.position(0., 0.,0.),tm.position(3.,0.,0.)],[0.5,0.5]

RefWin "winl” modified by the above line is shown in Fig. [1.6]

36 CHAPTER 4. REFWIN

Figure 4.7: Shape of RefWin "winl” after applying offsetting operation.

Offsetting
win.offsetRefWin(thickness) modifies the existing 2D /3D shape
by expanding/contracting it along the normal to its surface. Negative

value of thickness results in contraction, whereas positive value
expands the existing shape.

winl.offsetRefWin(2.0)

RefWin "winl” modified by the above line is shown in Fig. [£.7]

4.5. MODIFYING REFWIN OBJECT 37

B B B WG

Figure 4.8: Shape of RefWin "winl” after stretching it along x-axis by
2.5pm.

Stretch

win.stretchRefWin(position(x1l,yl,z1)) stretches the existing 2D /3D
shape along the direction specified by position(x1l,y1,z1). The
stretch distance is equal to the norm of the specified position object.
Stretching is performed such that the surface of the RefWin retains

its shape.

winl.stretchRefWin(tm.position(2.5,0.,0.))

RefWin "winl” modified by the above line is shown in Fig.

Stretch at a point

win.stretchRefWinAtPoint (position(x1,yl,z1),position(x2,y2,22))
stetches the cross-section of the existing 2D/3D shape at a point
position(x1l,y1,z1) in the plane perpendicular to the direction
specified by position(x2,y2,z2). Among the two parts of the
structure on either side of the cut-plane, the structure on the same

side as the stretch direction is shifted, whereas the one on the other

side is kept the same. If the cut-plane does not cut the structure, and

if the structure lies on the same side as the stretch direction, then the
entire structure is shifted by the direction. Otherwise, the structure is

not modified.

winl.stretchRefWin(tm.position(3.5,0.,0.),tm.position(2.5,0.,0.))

RefWin "winl” modified by the above line is shown in Fig. 1.9

38 CHAPTER 4. REFWIN

W

L.
o
b
s
+
iR
4
b

et

ﬁ

Figure 4.9: Shape of RefWin "winl” after stretching it at a point
(3.5,0,0) along x-axis by 2.5um.

Figure 4.10: Shape of RefWin "winl” after limiting its span to 0 <
< 3.5and 0 <y <4.5.

Limit Span

win.limitRefWinSpan(position(x1,y1,z1) ,position(x2,y2,z2))

procedure clips the shape to a box defined the two diagonally opposite
corners given by position(xl,yl,z1) and position(x2,y2,2z2).

winl.limitRefWinSpan(tm.position(0., 0.,0.),tm.position(3.5, 4.5,0.).

RefWin "winl” modified by the above line is shown in Fig. [£.10}

4.5. MODIFYING REFWIN OBJECT 39

Figure 4.11: Shape of RefWin "winl” after sweeping it along a path
defined by the points - (0,0,0), (0,0,1),(0,1,2)

4.5.5 2D to 3D shape conversion

Following operations convert a 2D RefWin to a 3D RefWin.

Sweep along a path

win.sweep2DRefWin([position(x1l,yl,z1),...]) takesa list of points
as position objects as an argument, and creates a 3D shape by
sweeping the 2D shape of the RefWin along the piecewise-linear path
formed by the list of points. Direction of each of the segment of the
piecewise-linear path must not be parallel to the 2D shape. Such a
segment is ignored.

winl.sweep2DRefWin([tm.position(0.,0.,0.),
tm.position(0.,0.,1.), tm.position(0.,1.,2.)])

RefWin ”"winl” modified by the above line is shown in Fig.

Sweep along a direction

win.makePrism2DRefWin(position(x,y,z)) sweeps the 2D shape
along the direction specified by position(x,y,z). Length of the
sweep is equal to the norm of the direction. No shape is generated if
the specified direction is parallel to the plane of the 2D shape.

winl.makePrism2DRefWin(tm.position(0.,0.,5.))

RefWin "winl” modified by the above line is shown in Fig. [£:12]

40 CHAPTER 4. REFWIN

Figure 4.12: Shape of RefWin "winl” after sweeping it by 5um along
z-direction.

Make pyramid

win.makePyramid2DRefWin(position(x,y,z)) creates a pyramid which
has the 2D shape as a base and the point specified by position(x,y,z)

as an “apex”. The program terminates giving error if the apex point

is in the same plane as the RefWin.

winl.makePyramid2DRefWin(tm.position(1l.,1.,5.))

RefWin "winl” modified by the above line is shown in Fig. [£.13]

Revolve around axis

win.revolve2DRefWin(position(x,y,z),position(dx,dy,dz),angle)
revolves the 2D shape around the axis passing through the point given

by position(x,y,z) and has the direction given by position(dx,dy,dz).
The 2D shape is revolved by angle degrees around the axis to create
the 3D shape. The axis must be in the same plane as that of the 2D
shape and the shape must lie entirely on one side of the axis.

winl.revolve2DRefWin(tm.position(0.,0.,0.),
tm.position(0.,1.,0.), 360.)

RefWin "winl” modified by the above line is shown in Fig. [£.15]

4.5. MODIFYING REFWIN OBJECT 41

Figure 4.13: Shape of RefWin "winl” after creating a pyramid out of
it.

(a) Revolving “winl” by 360° (b) Revolving “winl” by 230°

Figure 4.14: Shape of RefWin "winl” after revolving it by (a) 360°and
(b) 230°.

42 CHAPTER 4. REFWIN

4.5.6 Trapezoidal 3D etch

Following commands can create a custom etch-profile in 3D when
applied to a 2D mask RefWin in the XZ plane. Note, that creation of
a custom etch-profile in 2D can be achieved by defining a polygonal
RefWin with the etch profile.

import mesher as tm
winSi = tm.refwin("RefSi","Rectangle", [tm.position(-0.25, 0., -0.25
winSi.roundAt([tm.position(-0.25, 0., -0.25)]1,[0.1])

From depth-angle list

win.sweep2DMaskDepthAngle([dyl,angl,dy2,ang2,...]) createsa
piecewise trapezoidal 3D shape from a 2D RefWin in XZ plane. The
shape is created by applying successive trapezoid etching using the
RefWin as a mask. The function takes a list of numbers as input.
Numbers at odd positions in the list (e.g. dy1, dy2, ...) specify etch
depth (in pm) of the successive trapezoidal etches. Numbers at even
positions in the list (e.g. angl, ang?2, ...) specify angle in degrees of
the etch side-walls with the etch-direction in each of the successive
trapezoidal etches. Positive angle implies outward slant of the side-wall.

winSi.sweep2DMaskDepthAngle([-0.2,5.71,-0.2,8.53,-0.2,11.3])

Here, —0.2 is depth. Negative value indicates shape “growth” in
negative direction. 5.71°s angle in degrees of the sidewalls with the
growth direction. Changing the sign of the angle would bend the
sidewalls “inward”.

RefWin "winSi” modified by the above line is shown in Fig. 77.

From etch profile

win.sweep2DMaskPositionList ([position(x1l,yl,z1),position(x2,y2,z2)..
creates a piecewise trapezoidal 3D shape from a 2D RefWin in X7Z
plane. The shape is created by applying successive trapezoid etching
using the RefWin as a mask. The function takes a list of positions as
input. Difference between consecutive points in the list is converted
to the pairs of etch-depth and etch-angle as follows. Etch-depth is

4.5. MODIFYING REFWIN OBJECT 43

AN

0.1

(a) Etch mask (b) Trapezoidal etch shape

Figure 4.15: (a) Shape of RefWin ‘mask’ in XZ plane and (b) Shape
of RefWin after using the mask for trapezoidal etch.

given by the y-component of the difference (y2 — y1). Corresponding

etch-angle is calculated as arctan(—\/‘im;yw),

winSi.sweep2DMaskPositionList([tm.position(0,0,0),
tm.position(-0.02,-0.2,0.),tm.position(-0.05,-0.4,0.),
tm.position(-0.09,-0.6,0.)])

The shape obtained by the above line is identical to the shape obtained
by the python line in the previous sub-subsection.

4.5.7 Saving the shape
Save STL file

win.saveSTL () saves the shape of the RefWin in an STL file - <Name> .stl.
Here, <Name> is the RefWin name which can be set by win.setName (name).

Chapter 5

Configuring Regions,
Contacts, and Doping

A semiconductor device or an optoelectronic wave-guide is composed
of a number of objects such as regions, contacts, and doping profiles.
They are created by associating material properties with the volumes
encompassed by the ‘RefWins’.

5.1 Region objects

A Region is created by associating material properties with one or
more ‘RefWins’. It can be instantiated in a config file as follows,

Region*Regleft:

{
RefWin = ["ReflLeft"];
Material = "Silicon";
DuplicateInterfaceVertices = ["RegMiddle"];
MaxAreaBulk = 0.1;

}

Region name is specified by a string after ‘Region™’ string. The above
region is named ‘Regleft’. A comma separated list of names of the

45

46 CHAPTER 5. REGIONS, CONTACTS, DOPING

RefWins which constitute the region are passed to the region object by
RefWin keyword. Material of the region is set by Material keyword.

If ‘TetMesh’ is specified as a meshing type, then the mesh refinement
is determined by the following keywords.

o MaxAreaBulk: Maximum area/volume of the triangle/tetrahedral
elements in the bulk of the region.

¢ MaxAreaInterface: Maximum area/volume of the triangle/tetrahedral
elements at the interface of the region.

e MinDopingGradient, MaxDopingGradient, AreaMinGradient, and
AreaMaxGradient : Parameters which define doping-dependent
mesh refinement.

For certain hetero-junction simulations, vertex at the interface
between two regions need to be duplicated such that one vertex belongs
to first region and the second vertex to second region. The region
names with which the given region has duplicated interface vertices are
specified as a comma separated list by DuplicateInterfaceVertices
keyword.

5.1.1 Python script interface

A region can be added to the device object in the python script using
the procedure setRegion on the ‘device’ as follows.

dio.setRegion (Name="RegSi", RefWinName="RefSi",
Material="Silicon", MeshingParams={"MaxAreaBulk" : 0.1})

Here, ‘dio’ is the device object instantiated in python script file. Other
arguments, such as MaxEdgeLength can be specified as a python
dictionary. Note that this procedure takes only a single RefWin
as input. If a region of a union of multiple RefWins is to be set, use
the following command,

dio.setRegion (Name="RegSi", RefWinNames=["RefSil", "RefSi2"],
Material="Silicon")

5.2. CONTACT OBJECTS 47

The above command takes names of multiple RefWins as input pa-
rameters.

A region can also be added by specifying a RefWin object created
by its Python constructor as follows.

win = m.refwin("RefSi2","Rectangle",
[m.position(1l, 0, 0.),
m.position(0, 1, 0.)1,{},{})
dio.addRegion (Name="RegSi2", refwin=win,
Material="Silicon", MeshingParams={})

Note, that the procedure dio.addRegion(...) is used above to input
the RefWin object win.

5.2 Contact objects

A Contact is composed of a number of vertices which are located in
the volume encompassed by the RefWins specified as a list of comma
separated strings with the keyword RefWin. It can be instantiated in
a config file as follows,

Contact*Cathode:
{

RefWin = ["RefCathode"]
}

The string after ‘Contact®’ is the name of the contact. The above
contact is named ‘Cathode’. It is an electrical contact in which all the
vertices of the contact have a fixed potential.

5.2.1 Thermal Contact

A ThermalContact is specified in the same way as an electrical Contact
as follows,

ThermalContact*Sink: {
RefWin = ["RefCathode"]
}

48 CHAPTER 5. REGIONS, CONTACTS, DOPING

The above contact is named ‘Sink’. It is a thermal contact in which
all the vertices of the contact have a fixed temperature in coupled
electro-thermal simulations.

5.2.2 Python script interface

An electrical contact can be added to the device object using the
following python procedure.

dio.setContact (Name="Cathode", RefWinName="RefCathode")

Note, that the above procedure accepts only one RefWin as an input.
Multiple RefWins can be linked to the same contact by calling the
above procedure with different RefWin names, repeatedly.

Similarly, a thermal contact can be added to the device object
using the procedure setThermalContact.

A contact can also be added by specifying a RefWin object created
by its Python constructor as follows.

dio.addContact (Name="RegSi2", refwin=win)

Note, that the procedure dio.addContact(...) is used to input the
RefWin object win.

5.3 Doping profiles

Dopant distribution in a semiconductor device is set by defining
the doping profiles. Each doping profile is active in a particular
RefWin specified by the keyword RefWin. The doping profile gives
concentration of the dopant species specified by Dopant at each of the
vertices in the RefWin. Total concentration of each dopant species
at each vertex is obtained by adding contributions from each of the
doping profiles at that vertex.

Note, that calculation of dopant concentration at each vertex is
performed only after meshing the structure (although dopant profiles
can be defined before).

A dopant profile shape is specified by Type. The following profile
shapes can be specified.

5.3. DOPING PROFILES 49

e Constant

e Gaussian

o Exponential
e Linear

e Analytic

5.3.1 Constant doping profile

When the profile type is set to Constant, a constant concentration
given by Concentration of a dopant set by Dopant is added to all
the vertices in the RefWin whose name is specified by RefWin. An
example of constant profile is given below.

DopingDef*Ndoping:

{

RefWin = "RefNDoping"
Type = "Constant"
Concentration = 1E18
Dopant = "Phosphorus"
b

5.3.2 Gaussian doping profile

Gaussian dopant distribution is created by specifying a base RefWin
by the keyword BaseWin together with the RefWin. In 3D devices,
the BaseWin is a 2D rectangle or polygon, whereas in 2D devices,
the BaseWin is a 1D segment. The peak concentration (C) of the
profile is set by Concentration and standard deviation (o) is set by
DecayLength. Depth (p) of the Gaussian peak from the BaseWin is
set by Depth. Gaussian peak in one or the other half-space of the
BaseWin plane can be chosen by changing the sign of Depth.

At each vertex at location 7 lying inside the RefWin, perpendicular
distance (d)) to the BaseWin is calculated together with lateral
distance (d)) from the edges of the BaseWin polygon in 3D or from
endpoints of the BaseWin in 2D. If the projection of the point onto the

50 CHAPTER 5. REGIONS, CONTACTS, DOPING

BaseWin lies inside the BaseWin polygon, then dj = 0. Thus, d; > 0.
Doping concentration at each vertex is given by,

Ci(F) = C - orf (_(Ci'f) exp <_;(dL - “)2> (5.1)

Here, i is the doping profile id. Total doping at a given vertex is
calculated by adding up dopant concentration at the given vertex from
all such profiles. An example of a Gaussian profile is given below.

DopingDef*Pdoping:

{

RefWin = "RefPDoping";
Type = "Gaussian";
Concentration = 5E16;
Depth = -0.1;
DecayLength = 0.1;
BaseWin = "PBaseLine";
Dopant = "Boron";

}

5.3.3 Exponential doping profile

Exponential dopant distribution takes the same set of arguments as
Gaussian profile explained in Subsec. [5.3.2] It differs from Gaussian
profile in the formula to calculate dopant concentration at each vertex
at location 7 in the RefWin. The formula is given by,

d dy —
Ci(F) =C -exp <—|) - exp (—M) (5.2)

o o
Here, C is set by Concentration, o is set by DecayLength, u is set
by Depth, d, is perpendicular distance from the BaseWin and d is

the distance of projection of the vertex onto the BaseWin plane from
the BaseWin edge.

5.3.4 Linear doping profile

Linear dopant profile takes the same set of arguments as Gaussian
profile explained in Subsec.[5.3.2] It differs from Gaussian profile in the

5.3. DOPING PROFILES o1

formula to calculate dopant concentration at each vertex at location 7
in the RefWin. The formula is given by,

d J—
C;(7¥) = C - max (1—',0) - max (1—|dJ'M70) (5.3)
p o

Here, C is set by Concentration, ¢ is set by DecayLength, p is set
by Depth, d, is perpendicular distance from the BaseWin and d is
the distance of projection of the vertex onto the BaseWin plane from
the BaseWin edge.

5.3.5 Analytic doping profile

When Analytic profile is specified, a user-defined expression is used
to calculate doping concentration at each vertex inside the RefWin.
The expression is provided as a string of numbers, common functions,
and mathematical operations with AnalyticExpr keyword. In the
expression, X, Y, and Z are the symbols reserved for x, y, and z
coordinate at each vertex. Thus, doping concentration at a vertex at
location ¥ = X2 + Y¢ + Z2 is given by,

Ci(m:C'f(vaaz) (54)

Here, C is set by Concentration. An example of a user-defined
analytic profile is given below.

DopingDef*Pdoping:

{

RefWin = "RefPDoping";
Type = "Analytic";

Concentration = 5E16;
AnalyticExpr = "abs(X*Y)+0.4*exp(-X*X)";
Dopant = "Boron";

}
Here, the user-defined function to define the doping profile is,

fx,y,2) = & x y| + 0.4 x exp (—a?) (5.5)

In this way, various doping profiles can be created from the user-defined
expressions. The structure generator uses ‘exprtk’ package for parsing

52 CHAPTER 5. REGIONS, CONTACTS, DOPING

the expression. All the mathematical operators and common functions
which are defined in ‘exprtk’ function can be used in the user-defined
expression.

5.3.6 Python script interface

A doping profile can be added to the device object ‘dio’ using the
command setDopingDef. For example, a constant doping profile can
be added as follows.

dio.setDopingDef (Name="Pdoping", RefWinName="RefPDoping",
Type="Constant", Concentration=5E16,
DopantSpecies ="Boron")

Similarly other types of doping profiles can be added by specifying ad-
ditional keywords such as BaseWin, DecayLen, Depth, AnalyticExpr,
etc.

A doping profile can also be added by specifying a RefWin object
created by its Python constructor as follows.

dio.addDopingDef (Name="Pdoping", refwin=win,
Type="Constant", Concentration=5E16,
DopantSpecies ="Boron")

Note, that the procedure dio.addDopingDef (...) is used to input
the RefWin object win.

5.4 Editing device

The following commands edit the entire device. These commands can
only be called on a python device object dio.

5.4.1 Mirror device

An example command is given by —

dio.mirrorDevice(Axis="X",KeepOriginal=True,MergeRegions=True)

The command reflects the device structure along with the mesh along
the axis specified by Axis. Reflection takes place at the extremum
(max/min) coordinate. For example, if Axis="X", the device is

5.5. SAVE AND LOAD 53

reflected on the positive X axis at the maximum x-coordinate. If
Axis="-X", the device is reflected on the negative X axis at the
minimum x-coordinate. If the argument KeepOriginal is set true, the
mirrored device is merged to the original device. If MergeRegions is
true, regions of the mirrored device are merged to the original device.

5.4.2 Translate device

An example command is given by —
dio.translateDevice(tm.position(x1l,y1,z1)) The command trans-
lates the device structure along with the mesh by tm.position(x1,y1,z1).

5.4.3 Stretch device

An example command is given by —

dio.stretchDeviceAtPoint (tm.position(xl,yl,z1),tm.position(x2,y2,22))
The command stretches the device structure (i.e. all the regions, doping

definitions, and contacts) at a point tm.position(xl,y1,z1) along

the direction tm.position(x2,y2,z2). The device is remeshed.

5.5 Save and Load

Various save and load functions have been provided to save various
entities (regions, mesh, contact, and doping definitions) created in
the device definition. Definitions of these entities are stored in binary
files (*.bin). They can be loaded to another device thereby allowing
copy-paste of these entities. These functions are described below.

5.5.1 Structure - save and load STEP

An example command to save the device structure as a STEP file is
given by —
dio.saveStructureAsSTEP("file_bdr.step") The command saves
all the regions in a step file. The region names as well as materials
are also stored. This step file can be viewed in any step file viewer. A
recommended viewer is cadassistant by OpenCascade.

The stored STEP file can be loaded to another device object by
using the following command —

54 CHAPTER 5. REGIONS, CONTACTS, DOPING

dio2.loadStructureFromSTEP("file_bdr.step") It loads the shapes
from the STEP file to the device dio2 and create a new region with
the same material corresponding to each loaded shape.

5.5.2 Regions - save and load

An example command to save the listed regions as a binary file is given

by —

dio.saveRegionsAsBin("file_reg.bin", ["regl","reg2"]) The com-
mand saves only the regions named regl and reg2 to the bin. If the

list of region names is empty then all the regions are stored to the bin
file.

The stored bin file containing regions can be loaded to another
device object by using the following command —
dio2.loadRegionsFromBin("file_reg.bin") It loads the regions to
the device dio2 as new regions. Existing regions remain.

5.5.3 Doping Definitions - save and load

An example command to save the listed doping definitions as a binary
file is given by —

dio.saveDopingDefsAsBin("file_dop.bin", ["dopl","dop2"]) The
command saves only the doping definitions named dop1 and dop2 to
the bin. If the list of doping names is empty, then all the doping
definitions are stored to the bin file.

The stored bin file containing doping definitions can be loaded to
another device object by using the following command —
dio2.loadDopingDefsFromBin("file_dop.bin") It loads the doping
definitions to the device dio2 as new doping definitions. Existing
definitions remain.

5.5.4 Mesh Definitions - save and load

An example command to save the listed mesh definitions as a binary
file is given by —

dio.saveMeshDefsAsBin("file_mdef.bin", ["mdefl1","mdef2"]) The
command saves only the mesh definitions named mdef1 and mdef2 to

5.5. SAVE AND LOAD 95

the bin. If the list of mdef names is empty, then all the mesh definitions
are stored to the bin file.

The stored bin file containing mesh definitions can be loaded to
another device object by using the following command —
dio2.loadMeshDefsFromBin("file_mdef.bin") It loads the mesh
definitions to the device dio2 as new mesh definitions. Existing
definitions remain.

5.5.5 Contact Definitions - save and load

An example command to save the listed contacts as a binary file is
given by —

dio.saveContactDefsAsBin("file_cont.bin", ["contl",'"cont2"])
The command saves only the mesh definitions named cont1 and cont?2

to the bin. If the list of contact names is empty, then all the contacts
are stored to the bin file.

The stored bin file containing contacts can be loaded to another
device object by using the following command —
dio2.loadContactDefsFromBin("file_mdef.bin") It loads the mesh
definitions to the device dio2 as new mesh definitions. Existing
definitions remain.

5.5.6 RefWins - save and load

An example command to save the listed RefWins as a binary file is
given by —

dio.saveRefWinsAsBin("file_ref.bin", ["refil", "ref2"]) The
command saves only the RefWins named refl and ref2 to the bin.
If the list of RefWin names is empty, then all the RefWins are stored
to the bin file.

The stored bin file containing RefWins can be loaded to another
device object by using the following command —
dio2.loadContactDefsFromBin("file_ref.bin") It loads the Re-
fWins to the device dio2 as new RefWins. Existing definitions remain.

Chapter 6

Configuring Mesh
(Generation

Regions defined by ‘Region’ objects are meshed to create finite element
mesh or finite difference mesh of the structure which can be used for
simulations. A quadtree/octtree based mesher (henceforth referred to
as ‘FEM-mesh’) is provided natively in the meshing package for creating
finite element mesh. Also, a rectangular/cubic element based mesher
(referred to as ‘tensor-mesh’) is provided natively for creating finite
difference mesh. Apart from that, various external mesh generators
such as Triangle (for 2D meshing) and TetGen (for 3D meshing) are
integrated into the meshing package, so that users can conveniently
use them to generate mesh by setting specific keywords in the config
file.

6.1 Mesh definition FEM or tensor-mesh

For FEM-mesh and the tensor-mesh generation, mesh-grid spacing
along x, y, and z axes in a specific volume of the device can be specified
by ‘MeshDef’ object, as follows.

MeshDef*MDefSiTop:
{

o7

58 CHAPTER 6. MESH GENERATOR

RefWin = "RefAll";

Xarg: [0., 0.0001, 0.05, 1.3

Yarg: [0., 0.025, 0.025, 1.]

Zarg: [0., 0.025, 0.025, 1.]
}

]

The above MeshDef object sets parameters of the mesh generator
program specific to the volume confined in the RefWin named RefWin.
It also specifies the parameters which are used in defining grid along
X, vy, and z axis using the keyword X, Y, and Z defined as follows.

Grid parameters

Each of the X, Y, and Z grid definitions contains minimum grid-point
spacing set by Xarg[1], maximum grid-point spacing set by Xarg[2].
The grid points along that axis have spacing between the these values.
If Xarg[3] factor is more than 1.0, then minimum grid spacing is
multiplied with Xarg[3] factor for every subsequent grid spacing
starting from grid point at Xarg[0].

In tensor-mesh, grid-points along x-axis for all & € [Tyin, Tmaz] are
set by the definition given by Xarg: [..], where x,,;, and T4, are
the smallest and larges x-coordinates of RefWin. Similarly, grid-points
along y- and z- axis are set by the definitions given by Yarg: [..]
and Zarg: [..], respectively.

On the other hand, in FEM-mesh, these mesh definitions are active
only in the volume of the device confined by the RefWin.

6.2 Mesh settings in Triangle or Tetrahe-
dral mesh

Mesh settings for Triangle or TetGen mesh engines are set region-wise
in Region object. The following mesh settings can be set in each region
definition.

o MaxAreaBulk: Maximum area/volume of the triangle/tetrahedral
elements in the bulk of the region.

6.3. MESHING OPTIONS 99

o MaxAreaInterface: Maximum area/volume of the triangle/tetrahedral
elements at the interface of the region.

e MinDopingGradient, MaxDopingGradient, AreaMinGradient, and
AreaMaxGradient : Parameters which define doping-dependent
mesh refinement.

This restriction on voronoi volume is incorporated in both the
external mesh engines to create refined mesh in the given region.

Note: The parameters noted above are considered only in Triangle
meshing of a 2D device.

6.3 Meshing Options

Any of the above specified four types of mesh can be selected during
mesh generation in the Device section of the config file. A sample
Device section in a config file is shown below.

Device:

{

Name = "Diode";
MeshType = "FEM";
Simulation = "DD";
¥

The argument MeshType recognizes the following keywords.

e FEM: Mesher performs Quadtree and Octtree based FEM meshing
on 2D and 3D devices, respectively.

e Tensor: Mesher performs rectangular and cubic tensor meshing
on 2D and 3D devices, respectively.

e TriMesh: Mesher uses Triangle package for meshing 2D devices.

An additional argument Simulation is used to specify the user’s
intent for the structure generation. It recognizes the following key-
words.

e DD: Quantities required for drift-diffusion simulations are calcu-
lated.

60 CHAPTER 6. MESH GENERATOR

e QT: Quantities required for quantum transport simulations are
calculated.

e FDTD, BPM, MODE: Quantities required for optical simulations are
calculated.

e PRO: Quantities required for process simulations are calculated.

Examples of generated mesh using each of the above meshing
alternatives are presented below.

Note: The parameters noted anywhere else in the config file are
ignored in NetGen mesher. Currently, region-specific mesh parameters
cannot be passed to NetGen mesher.

6.3.1 Tensor Meshing

The structure generation config file provided in Chapter [3]is used to
generate a tensor mesh, by setting Tensor as MeshType. Resulting
mesh is shown in Fig. [6.1(c)|

6.3.2 FEM Meshing

The structure generation config file provided in Chapter [3]is used to
generate a FEM-mesh, by setting FEM as MeshType. Resulting mesh is
shown in Fig.[6.1(a)].

6.3.3 Triangle Mesh Engine

The structure generation config file provided in Chapter [3] is used
to generate a mesh using Triangle package, by setting TetMesh as
MeshType. Resulting mesh is shown in Fig. [6.1(b)]

6.3.4 NetGen Mesh Engine

The structure generation config file provided in Chapter [3]is modified
to create a 3D Silicon device by adding depth to ‘SiReg’ region. It
is then used to generate a mesh using NetGen, by setting TetMesh
as MeshType. NetGen mesher settings are specified in NetgenParams
section in the config file. The following keywords take a number as an
argument.

6.4. PYTHON INTERFACE - MESH GENERATION 61

e maxh : Maximum global mesh size allowed.

e grading : Mesh grading quality - 0: uniform, 1: local grading
enabled.

e fineness : Mesh refinement quality - 0: coarse, 1: refined.

e maxiter_refine : Maximum number of iterations in ‘iterative
refinement’.

o optsteps_3d : Number of optimization runs for 3d meshing.

Following keywords set in NetgenParams take a list of numbers as
an argument.

e RefinementPoints : Points in the 3D domain are specified
together with the desired refinements at those points. They are
listed as follows,

{RefinementPoints : [pl.x,pl.y,pl.z,dl,
p2.%,p2.y,p2.2,d2] }

This list sets a local mesh size of d1 at point p1 and d2 at point
p2. In this way, any number of points and the local mesh size
can be set.

e RefinementLines: Lines in the 3D domain are specified together
with the desired refinements along those lines as follows,

{RefinementLines : [pl.x,pl.y,pl.z,p2.x,p2.y,p2.2,d1,
p3.x,p3.y,p3.2,p4.x,p4.y,p4.2,d3]}

This list sets a local mesh size of d1 along the line p1 and p2 as
well as a mesh size of d3 along the line between p3 and p4. In
this way, any number of lines and corresponding local mesh size
can be set.

6.4 Python interface - mesh generation

The mesher (or tensormesher) provides following command for mesh
generation and retrieving mesh data.

CHAPTER 6. MESH GENERATOR

62

(a) FEM

1/
\/
v
Vv,

%VA

N
N

N/

S22
X
X

S

AVAY
AN
vg%!

7
VAVavi

AN vt
RIS
PEROSAINS
SR
AMWEEEVV}“

<0

ISR
VAVAN S

(b) TetMesh

(¢) Tensor

Mesh of a 2D diode generated by running the diode config

file in Chapter [3| with MeshType of (a) FEM, (b) TriMesh, (c) Tensor.

Figure 6.1:

6.4. PYTHON INTERFACE - MESH GENERATION 63

(b) 3D-TetMesh

(¢) 3D-Tensor

Figure 6.2: Mesh of a 3D diode generated by running the diode config
file in Chapter [3| with MeshType of (a) FEM, (b) TetMesh, (c) Tensor.

64 CHAPTER 6. MESH GENERATOR

6.4.1 Create mesh

The command dio.createDeviceMesh() creates mesh from scratch.
For this command to work properly, no mesh must be present in
the device. Hence, it is necessary to run dio.clearDeviceMesh()
command to erase existing mesh.

6.4.2 NetGen mesh settings

The command dio.setNetgenParams () provides NetGen global mesh-
ing parameters. It takes two arguments as follows.

1. NumericParams : A Python dictionary mapping a parameter
to its numeric value is specified. Following parameters can be
passed in the dictionary.

o maxh : Maximum global mesh size allowed.

e grading : Mesh grading quality - 0: uniform, 1: local
grading enabled.

e fineness : Mesh refinement quality - 0: coarse, 1: refined.

e maxiter_refine : Maximum number of iterations in ‘iter-
ative refinement’.

o optsteps_3d : Number of optimization runs for 3d mesh-
ing.

2. NumericListParams : A Python dictionary mapping a parame-
ter to a python list of numbers is provided. Following parameters
can be passed in the dictionary.

e RefinementPoints : Points in the 3D domain are specified
together with the desired refinements at those points. They
are listed as follows - [pl.x,pl.y,pl.z,d1,p2.x,p2.y,p2.2,d2].
This list sets a local mesh size of d1 at point p1 and d2 at
point p2. In this way, any number of points and the local
mesh size can be set.

e RefinementLines : Lines in the 3D domain are specified
together with the desired refinements along those lines as
follows, [pl.x,pl.y,pl.2,p2.%x,p2.y,p2.2,d1,p3.%x,p3.y,p3.2,p4.X

6.5. PYTHON INTERFACE - MESH DATA RETRIEVAL 65

This list sets a local mesh size of d1 along the line p1 and
p2 as well as a mesh size of d3 along the line between p3
and p4. In this way, any number of lines and corresponding
local mesh size can be set.

6.4.3 Clear mesh

The command dio.clearDeviceMesh() clears existing device mesh,
if present.

6.4.4 Clear structure and mesh

The command dio.clearDeviceData() clears existing device struc-
ture (i.e. all the regions, doping definitions, and contacts) and mesh.

6.5 Python interface - mesh data retrieval

Mesh data may be needed to postprocess results, such as integration
or averaging of a vertex physical quantity (e.g. eletron density).
Following commands are provided in the python interface for retrieving
tensormesher data. These commands are called on the device
python object. Note, that a tensor mesh is a rectangular/cubic mesh
completely specified by the grid spacing along X-, Y-, and Z- (in 3D)
axes.

6.5.1 Get region information

The command getVertexRegionMapNp () returns region ids for each
point on the grid. It is returned as a “numpy array” of integers.
Length of the array is the number of vertices in the device. Each
integer represents a region id.

Region names and material corresponding to all the region ids
can be retrieved by getRegionNames() and getRegionMaterials()
commands, respectively. They are retured as a python list of strings
(words) in the same order as region ids.

66 CHAPTER 6. MESH GENERATOR

6.5.2 Tensor mesh-grid spacing

Grid spacings along X-, Y- and Z- axes are returned by the following
commands-

e getTensorMeshXLinSpaceNp()
e getTensorMeshYLinSpaceNp()

o getTensorMeshZLinSpaceNp() in 3D. In 2D devices, getTensorMeshZLinSpa
returns Y-spacing.

Note, that the grid spacings are returned as a “numpy array”.

6.5.3 Tensor mesh vertex id

The command getNumberOfVertices () returns the number of vertices
in the structure.

Vertex id of the vertex at x-, y-, z- point indices ix, iy, iz is
returned by getVidFromXidYidZid(ix,iy,iz).

Similarly, ix, iy, iz point indices corresponding to the given
vertex id vid are returned by getXidYidZidFromVid(vid). They are
returned as python list of three integers.

The x-, y-, z- coordinates of the vertex vid are given by (x[iz], y[iy], z[iz]),
where z, y, z are X-, Y-, and Z- line-spacings returned by the commands
mentioned before, and ix, iy, iz are point indices.

6.5.4 FEM mesh vertex coordinates

The command getNumberOfVertices () returns the number of vertices
in the structure.

The x-, y-, z- coordinates of the vertex of the finite element mesh
are given by the following commands,

e getXsNp(Q)
e getYsNp(Q)

e getZsNp() in 3D. In 2D devices,getZsNp () returns Y-spacing.

6.5. PYTHON INTERFACE - MESH DATA RETRIEVAL 67

Note, that the vertex coordinates are returned as a “numpy array” of
length equal to the number of vertices. Thus, coordinates of vid'"
vertex are given by (z[vid], y[vid], z[vid]), where x, y, z are X-, Y-,
and Z- coordinate lists returned by the commands mentioned above.

6.5.5 FEM mesh element list

The command getNumberOfElements() returns the number of tri-
angular (in 2D mesh) or tetrahedra (in 3D mesh) elements in the
structure.

Each triangle or tetrahedral element consists of three or four
vertices, respectively. The command getElementListNp() returns
a 2D “numpy” array of integers of dimension - numElements X3 (2D
mesh) or numElements x4 (3D mesh). The leading dimension lists the
elements while the trailing dimension lists the vertex ids corresponding
to the element. For example, all vertices (3 or 4) of i" element are

given by the array e[i], while j** vertex of i*" element is given by

eli][j]-

6.5.6 Voronoi volume

Volume in pm? (area in pum? in 2D) of voronoi region around the given

vertex id vid is returned by getVoronoiVolumeAtVertex(vid).
Only in FEM mesh, the command getVoronoiVolume () returns a

numpy array of voronoi volume at all the vertices in the device.

Chapter 7

Structure Generation
from GDS Layout files

Fabrication of semiconductor devices on the chip is performed by
repeated application of implantation, etching, oxidation, or annealing
steps. Masks are often used to selectively perform implantation or
etching in semiconductor regions to create pn-junctions or to isolate
devices. Mask files are often stored in GDS format. To create these
devices for simulation, GDS mask files need to be imported into the
structure generator. This chapter describes how to import GDS mask
files to transfer masks into the device structures.

7.1 Contfig File

A GDS mask file named ‘coupler.gds’ stores mask of a coupled waveg-
uide structure as shown in Fig[7.I] The GDS file consists of a set of
convex 2D polygonal objects known as ‘layers’. These layers are used
to manufacture a photo-lithography mask. Among all the layers, the
group of layers which are used to create a certain semiconductor device
are often bundled together in a layer group called ‘cell. The cell can
be used to repeat the mask designs at multiple locations on the chip
to create devices.

69

70 CHAPTER 7. MESH GENERATOR

Layers

Figure 7.1: Example GDS file drawing the design of two Silicon
waveguides on Oxide layer. The waveguides are coupled in the middle
section by bringing them closer. This file is taken from []. Layer
numbers are provided in the inset. The file consists of only a single
cell named ‘test’.

Following config file imports the GDS file and creates 3D structure
of a coupled waveguide.

Device:

{

Name = "SiWG";
MeshType = "FEM";
Simulation = "DD";

3

GDSLayerDef*C1:

{

GDSFileName = "coupler.gds";

Layer*Ll: {Cell="test", Layer=0, Y=0, dY=0.2};
LayerxL2: {Cell="test", Layer=31, Y=0.2, dY=0.2};
LayerxL3: {Cell="test", Layer=32, Y=0.2, dY=0.2};
Layer*L4: {Cell="test", Layer=0, Y=0.2, dY=0.2};
}

RefWin*RefAll:

{
Position: ([-18., -.1, -6.]1, [18., 0.5, 6.1);

7.1. CONFIG FILE

Shape = "Cuboid";
b

Region*RegGas:

{

RefWin = ["RefAll"];
Material = "Gas";

}

Region*RegSi:
{

// activate for a region of the coupler shape
//RefWinGDS = ["C1_L2", "C1_L3"];

// activate for the doping of the coupler shape
RefWinGDS = ["C1_L4"];

Material = "Silicon";
}

Region*RegOxTop:

{

RefWinGDS = ["C1_L1"];
Material = "Oxide";

}
/*DopingDef*Pdoping:
{

RefWin = "RefAll";
Type = "Gaussian";
Concentration = 5E16;
Depth = 0.1;

DecayLength = 0.1;
BaseWinGDS = ["C1_L2", "C1_L3"];

Dopant = "Boron";
I/
MeshDef*MDefAll:
{

RefWin = "RefAll";

71

72 CHAPTER 7. MESH GENERATOR

Xarg: [0., 0.0001, 0.05, 1.3

Yarg: [0., 0.025, 0.025, 1.]

Zarg: [0., 0.025, 0.025, 1.]
¥

]

Among the objects listed in the above config file, Device (see

Sec. [2.1.1), RefWin (see Sec. [2.1.2)), MeshDef (see Sec. [2.1.6), and

Region (see Sec.|2.1.3)) have the same functionality as explained in
Chapter [3] Differences in some of the objects are described below.

7.2 GDSLayerDef object

A GDSLayerDef object reads the gds file and creates 2D or 3D RefWins
from the mask layers, which can be used to create various regions.
Name of the object is specified as a string after ‘GDSLayerDef*’ string.
In this example, the GDSLayerDef is named ‘C1’. The GDS file is
specified by GDSFileName. A Layer object in GDSLayerDef reads a
specific layer and converts it to a 2D or 3D RefWin depending on the
inputs as follows.

7.2.1 Layer object

A Layer object sets which layer from the GDS file is read using the
argument Layer from the cell specified using the argument Cell. Each
layer is composed of a group of 2D polygonal mask objects which are
assumed to be in XZ plane in mesher object. The argument Y sets
y-intercept of the XZ plane of these 2D masks in the device. If the
argument dY is not set or is set to 0, then 2D ‘RefWin’ of the 2D mask
polygons is created. If dY is set to a negative number, the 2D polygons
are extruded towards negative Y, and a 3D RefWin is created in the
polygonal volume in XZ plane and Y —dY <y < Y. If dY a positive
number, the 2D polygons are extruded towards positive Y, and the 3D
RefWin is created in the volume in XZ plane and Y <y <Y +dY.
RefWin created by the above operations is noted as RefWinGDS. It
is named ‘<GDSName>_<LayName>’, where <GDSName> is the
name of GDSLayerDef object and <LayName> is the name of Layer
object. For example, Layer object named ‘L1’ in GDS layer definition

7.3. REGION OBJECT 73

‘C1’ creates a RefWin ‘C1_L1". It can be referenced from Region object
using this name.

Multiple GDSLayerDef objects with different names can be created
in a config file which enables importing multiple GDS files to create a
device structure.

7.3 Region object

When a mask layer is used for masked etching or blanket deposition of
a material layer followed by masked etching, a 3D region of the shape
of the mask with a specific thickness is formed on the substrate. Such
a region can be created in the structure by importing the relevant
mask, specifying Y and dY to create a 3D RefWinGDS, and linking
this RefWinGDS with the region object. A usual Region object is
created and its material is set normally. Then, names of all the linked
RefWinGDS are specified as a comma separated list with the argument
RefWinGDS. Note, RefWin argument must not be set when RefWinGDS
is provided.

A region of the shape of the coupler is created by un-commenting
the line RefWinGDS=["C1_L2","C1_L3"] and commenting out the line
RefWinGDS=["C1_L4"] in RegSi region and running the above config
file to generate the mesh. The generated mesh can be viewed in
paraview using ‘SiWG_str.xdmf’ file. The device is shown in Fig. [7.2]

A similar structure can be created with the tensor mesh by setting
MeshType="Tensor". Tensor mesh can be created by running the
mesher and can be visualized in paraview. The device structure is

shown in Fig. [7.2(a)|and cutline is shown in Fig. [7.2(b)]

7.4 DopingDef object

A mask is typically used for implantation of various dopant ions into
the semiconductor substrate. Implantation and subsequent annealing
creates a vertical Gaussian profile of dopants in the unmasked areas
of the substrate, together with lateral straggle under the masked
areas. This effect can be mimicked by creating a DopingDef object as
described in Sec. and passing the 2D mask RefWins (created by

74 CHAPTER 7. MESH GENERATOR

Silicon

~

VertexRegionMap

(a) Meshing

Q
O
=
[
o
(o)
(0]
(a4
<
()
=
(]
>

(b) Doping

Figure 7.2: A region object shown in the figure is created when a
RefWinGDS corresponding to the region in the shape of the coupler is
activated. In the above file, ‘0’ corresponds to ‘RegGas’, ‘1’ corresponds
to the ‘RegSi’, and ‘2’ corresponds to the ‘RegOxTop’.

7.4. DOPINGDEF OBJECT 75

setting dY=0.) as comma separated list to the argument BaseWinGDS
in DopingDef object.

A doping profile of the shape of the coupler is created by comment-
ing out the line RefWinGDS=["C1_L2","C1_L3"] and un-commenting
out the line RefWinGDS=["C1_L4"] in RegSi region. Also un-comment
the doping profile object. Modify the GDSLayerDef object as follows.

GDSLayerDef*C1:

{

GDSFileName = "coupler.gds";

Layer*Ll: {Cell="test", Layer=0, Y=0, dY=0.2};
LayerxL2: {Cell="test", Layer=31, Y=0.2, dY=0.0};
Layer*L3: {Cell="test", Layer=32, Y=0.2, dY=0.0};
Layer*L4: {Cell="test", Layer=0, Y=0.2, dY=0.2};
}

Since the layers L2 and L3 are used as a BaseWin (or in other words,
a mask), their thickness dY must be set to zero.

Now, run the above config file to generate the mesh. The generated
mesh can be viewed in paraview using ‘SiWG_str.xdmf’ file. The
device is shown in Fig. |[7.3(a)l and the doping profile is shown in
Fig. Cutplane perpendicular to the waveguide direction at the
middle of the structure is shown in Fig. [7.3(c)l

Note: A Python script interface is currently not provided for importing
GDS files.

76 CHAPTER 7. MESH GENERATOR

ElementRegionMap

(a) Meshing

Silicen

DopingConcentration

(b) Doping

— 0.0e+00

oA -le+16
Silicon P

-3e+16

Oxide R
—-5.0e+16

DopingConcentration

(c) Contacts

Figure 7.3: (a) Device structure, (b) analytic doping profile as seen
from the surface of the structure, and (c) doping distribution at the
cutplane perpendicular to the waveguide direction at the middle of
the structure.

Chapter 8

Graphical
User-Interface

Device structure generation and meshing can also be performed with a
graphical-user-interface (GUI) of the structure generator and mesher.
The GUI can be opened using the following line -

meshergui &

The above command opens a GUI window which consists of a
‘Menu-bar’, a ‘Tool-bar’, a structure drawing board, and a side-pane.
The ‘Menu-bar’ contains various functions as drop-down menus, while
the ‘Tool-bar’ contains some of the more common functions as short-cut
buttons. The ‘side-pane’ contains a stack of different widgets. Each
of the widgets contains an information on the structure, GDS layout
to structure conversion, python script for generation, etc. The shapes
added to the structure appear on the structure drawing board. The
meshergui tool saves the current structure into a file with extension
“* gstr’. This file can be opened later in the meshergui tool to load
the structure.

7

78 CHAPTER 8. GUI

The meshergui performs finite-element meshing of the device.

The tensormeshergui performs cubic or rectangular meshing of the
device.Apart from that, both the programs have the same GUI.

Additionally, the processgen provides GUI for semiconductor process
modeling and simulation. Some of the menus of this program are also
present in disabled state in the above mentioned mesher programs.

Various functionalities available as a single-click buttons on the
GUI window are described in Fig. [8.1] Each of the above functions
has been described in detail below.

8.1 File-menu

‘File’ menu on the menu-bar shows the following ‘items’ on click (see

Fig. .

8.1.1 New

When clicked, it opens a new meshergui window keeping the current
circuit unmodified. If the current window is empty, then it does
nothing.

8.1.2 Open

When clicked, it opens a dialog box to select the ‘*.sstr’ file to be
opened. The selected ‘*.sstr’ file is opened in a new meshergui window.
If the current window is empty, then the circuit file is loaded to the
current window instead.

8.1.3 Import GDS File

When clicked, it opens a dialog box to input file-name and location of
the “*.gds’ file to be imported. The layout file in GDS format is im-
ported and is then available in the tab named GDS Layout to Structure.

‘[00} UOTRISUSS SINJONIIS S} JO 90€JIajul-Tosn-Teoryders) :1°Q oInSi

79

| ae

9]osuod
1dudS Uoyhd
2in3nis o) noke] sao

dweN pI

ysa suolbay sadeys ge

dn anop | :uaplo Aejdsiqg sadeys
4/ 3 A :ol-deus puo ~ ZAX+ M3IA & 2deuns Aejdsig a SuON 123|9S aue|d-Ind 0 1de2s3jul [« AX| I1d-2PIND

sadeys

& wsan dog o> e Sy \/ YKL Q@B OVOB OO0 & DWW it e

ysa 3ea1D sy adeys 39S adeys ppy AP MIIA 3|14

aJnPNIISO

80 CHAPTER 8. GUI

Figure 8.2: File menu.

8.1.4 Save

When clicked, it opens a dialog box to input file-name and location
of the “*.sstr’ file to be saved. Following information is stored in the
“* sstr’ file with the given name and at the given location.

¢ Defined RefWins

o Defined regions, mesh definitions, contact definitions, and doping
definitions

e Python script to generate the structure

It does not store generated mesh, nor does it store imported GDS file.
User is requested to recreate mesh after opening the *.sstr file.

Working directory: The directory from which processgen is called,
is the default working directory. However, the folder in which the
structure is stored automatically becomes a working directory.

Device name: Name of the file (excluding extension) is the device
name. Other files (e.g. mesh file, python file) begin with the same
name in the working directory. There is no default name for the device.

8.1.5 Save As

When clicked, it opens a dialog box to input file-name and location of
the “*.sstr’ file to be saved. Current state of the meshergui is stored.

8.2. VIEW-MENU 81

- AT 8 2000A 0486880 DDA w cot on e &

Figure 8.3: View menu.

8.1.6 Save As STEP

When clicked, it opens a dialog box to input file-name and location of
the “*.step’ file to be saved. All the shapes linked to the regions are
stored in the step file.

8.1.7 Export Python Script

When clicked, it opens a dialog box to input file-name and location
of the python script to be saved. Python script generated in the
tab named Python Script is stored in the file. If the structure is
previously stored, the python script is stored in the working directory
with the same name as the device name.

8.1.8 Save Mesh

When clicked, it stores the mesh file ‘devicename.h5’ and the xml
script ‘devicename.xdmf’ in the working directory. Here, devicename
is the name of the device stored before beginning meshing. The
‘devicename.xdmf’” mesh file can be viewed in paraview.

8.2 View-menu

‘View’ menu on the menu-bar shows the following ‘items’ on click (see

Fig. .

82 CHAPTER 8. GUI

8.2.1 Zoom-to-fit

When clicked, adjusts zoom such that the entire structure is within
the window.

8.2.2 3D

When clicked, it toggles ‘3D’-button. Deactivate ‘3D’-button to draw
2D structures, and activate it to draw 3D structures. Note, that the
button can be toggled only when no shape is present. Thus, it is
advisable to toggle it to suitable state before drawing the structure.

8.2.3 Ex

When clicked, it toggles ‘Ex’-button. When ‘Ex’ is active, exact
coordinates of the corners of the circumscribing cuboid are requested
from the user while drawing the shapes.

8.2.4 Ruler

When clicked, ‘Ruler’-button toggles. When ‘Ruler’ is active, distance
can be measured between any two points on the structure. To do
so, click on the first point. A ruler starting at that point will be
dynamically displayed. Clicking the second point will fix the ruler and
display distance between the two point.

8.2.5 Mesh

When clicked, ‘Mesh’ button toggles the view between mesh-view and
structure-view. If mesh is not generated, mesh-view will display an
empty window. Note, that when mesh-view is active, the structure
cannot be edited.

8.3 Edit-menu

‘Edit’ menu on the menu-bar shows the following ‘items’ on click (see
Fig. [8.4)).

8.3. EDIT-MENU 83

m Add Shape Set Shape As... Create Mesh At
(5 Move Ctrl+M
[ty Copy Ctrl+C) D O Q 6
W Delete Del
A\ Flip ut-Plane Select N
| Goolean operation TS
i} Select Shapes Intersect
i) Round Selected Subtract

Clear Selection
kP Stretch
3, Offset
(X Prism from 2D Shape
/\ Pyramid from 2D Shape
Revolve 2D Shape

Figure 8.4: Edit menu.

8.3.1 Move or Copy

Click on ‘Move’ or ‘Copy’ buttons to toggle it. When ‘Move’/‘Copy’
is active, click on any shape to begin moving it. Moving the cursor
will move the shape together with the cursor. Click on the destination
point to place the shape.

If ‘Copy’ is active, a copy of the initial object will be placed at the
destination without changing the initial shape.

8.3.2 Delete

Click on ‘Delete’ button to toggle it. When ‘Delete’ is active, click on
any object to delete it. Note, the shape will be deleted only if it is
not assigned to any of the Region, MeshDef, DopingDef, or Contact.
Else, first delete the respective entities first before deleting the shape.

8.3.3 Flip

Click on ‘Flip’ button to toggle it. When active, click on any shape to
mirror it. The shape is reflected relative to the current guide-plane
(XY, YZ, or XZ) placed at current intercept along the plane-normal.

8.3.4 Select shapes

Click on ‘Select shapes’ button to toggle it. When active, click on any
geometric shape to select it. Depending on the the selected option

84 CHAPTER 8. GUI

in ’Select’ drop-down menu in ’display-control’ panel, the different
geometric shapes are selected as follows.

e None : Any of the solid entity is selected.

e Body : A 3D shape is selected.

e Face : A 2D face of the 3D structure or a 2D shape is selected.
e Edge : An edges of a 2D or 3D shape is selected.

e Point : A corner point of a 2D or 3D shape is selected.

Pressing key or clicking ‘Clear selection’ button empties the
selected shapes list. Alter If you wish to perform subsequent actions

on the selected shapes, please don’t press key or click ‘Clear
selection’.

8.3.5 Boolean operations - Unite, Intersect, and
Subtract

Select any set of shapes. Then click on any of the three boolean
operations. The following actions will happen.

e Unite : The selected shapes will be united with the first selected
shape.

e Intersect : Common area between first selected shape and the
next selected shapes is computed and set to the first shape.

e Subtract : The selected shapes will be subtracted from the first
selected shape.

Notice, that the first selected shape is modified at the end of each
of the above boolean operations.

8.3.6 Round Selected or Chamfer Selected

To round all the corners of the shapes with a specific rounding radius,
first select them. Then click on ‘Round selected’. A dialog box will

8.3. EDIT-MENU 85

open up asking for rounding or Chamfer radius. Specify the radius
and press .

To round specific corners or edges of the shapes, first select these
corners/edges by using Point / Edge option in ‘Select’ drop-down
menu in ‘display-control’ panel. Then click on ‘Round selected’. A
dialog box will open up asking for rounding or Chamfer radius. Specify

the radius and press .

8.3.7 Stretch

To stretch the given shape along a specific major axis, activate ‘Stretch’
button. When active, click on any of the shapes. A dialog box will
appear. Specify stretch length and press ok. The given shape will be
stretched at the clicked point along the axis normal to the current
guide-plane.

8.3.8 Offset

To offset the given shape by a specific offset distance, activate ‘Stretch’
button. When active, click on any of the shapes. A dialog box will
appear. Specify offset distance and press ok. The given shape will
be offset by the given distance. This could be useful in mimicking
deposition process.

8.3.9 Prism from 2D Shape

In mode, activate ‘Prism from 2D Shape’ button. When active,
click on the 2D shape which forms base of the prism. Then click on
corresponding point which is at the top surface of the prism. A prism
will be drawn by ‘sweeping’ the base along the vector starting at the
base point and ending at the top surface point.

8.3.10 Pyramid from 2D Shape

In mode, activate ‘Pyramid from 2D Shape’ button. When active,
click on the 2D shape which forms base of the prism. Then click on
the apex point of the pyramid. A pyramid will be drawn by connecting
all the corners of the base to the apex point.

86

CHAPTER 8.

Add =h=lsls] Set Shape As... Create
e o
(O Regular Polygon

&3 Polygon

| [Rectangle

Q Circle/Ellipse

@ Cuboid

B Cylinder

A Cone

@ sphere/Ellipsoid

Prism

4> Pyramid

Wedge
(7 Convex hull
Convex hull from file

From Last Selected
Load STL/BREP/IGES

Figure 8.5: Add shape menu.

8.3.11 Revolve 2D shape

GUI

In mode, activate ‘Revolve 2D shape’ button. When active, click
on the 2D shape which is to be revolved. The axis normal to the
current guide-plane (XY, YZ, or XZ) is the axis of revolution. Click on
any of the point to fix the axis of revolution at any point the plane.
The 2D shape will be revolved around the axis at the given point.

8.4 Add-Shape-menu

‘Add Shape’ menu on the menu-bar enables selecting various shapes to
draw in the window. It lists the following ‘items’ on click (see Fig. .

8.4. ADD-SHAPE-MENU 87

8.4.1 Segment

When active, successively click on the start-point and end-point of the
segment to add a segment to the shapes. It is disabled in mode.
Following buttons add 2D-shapes to the drawing board.

8.4.2 Axis-aligned ‘Rectangle’

When active, successively click on a corner and a diagonally opposite
corner of the ‘axis-aligned’ rectangle to add a rectangle to current
guide-plane in the drawing board.

8.4.3 Circle

When active, successively click on a corner and a diagonally opposite
corner of the ‘axis-aligned’ rectangle. This will add a circle or an
ellipse ‘in-scribing’ the axis-aligned rectangle to current guide-plane in
the drawing board.

8.4.4 Regular Polygon

When active, successively click on a corner and a diagonally opposite
corner of the ‘axis-aligned’ rectangle. This will add a regular polygon,
which in-scribes the axis-aligned rectangle to current guide-plane in
the drawing board.

8.4.5 Polygon

When active, successively click on a consecutive corners of the polygon
in clockwise or counter-clockwise direction. A polygon will be drawn
connecting the added points. A double-click on the point will close
the polygon. This operation will add a polygon to current guide-plane
in the drawing board.

Following buttons add 3D-shapes to the drawing board. They are
disabled when is disabled.

88 CHAPTER 8. GUI

8.4.6 Cuboid

A ‘axis-aligned’ cuboid is drawn in two steps. First, a ‘axis-aligned’
rectangle at the cuboid base is drawn by successively click on a corner
and a diagonally opposite corner of the rectangle in the drawing board.
In the second step, click on the top corner of the cuboid will add a
‘axis-aligned’ cube to the drawing board.

8.4.7 Cylinder

A ‘axis-aligned’ cylinder is drawn in two steps. First, a ‘axis-aligned’
circle at the base is drawn by successively click on a corner and
a diagonally opposite corner of the circumscribing rectangle in the
drawing board. In the second step, click on a point on the top of the
cylinder will add a cylinder to the drawing board, whose base is on
the guide-plane.

8.4.8 Cone

A cone is drawn in two steps. First, a ‘axis-aligned’ circle at the base
is drawn by successively click on a corner and a diagonally opposite
corner of the circumscribing rectangle in the drawing board. In the
second step, click on a point on the top face of the cone will add a
cone to the drawing board, whose base is on the guide-plane.

8.4.9 Sphere/Ellipsoid

A ellipsoid is drawn in two steps. First, a ‘axis-aligned’ circle at the
cross-section of the ellipsoid is drawn by successively click on a corner
and a diagonally opposite corner of the circumscribing rectangle in
the drawing board. In the second step, click on a point on the top
face will add a ellipsoid to the drawing board.

8.4.10 Prism

When clicked, a dialog box appears asking number of sides of the prism.
The number of sides remain fixed for drawing subsequent prisms. To
change them, deactivate and reactivate ‘Prism’ button.

8.4. ADD-SHAPE-MENU 89

The prism is drawn in two steps. First, a ‘regular’ polygon at
the base of the prism is drawn by successively click on a corner and
a diagonally opposite corner of the circumscribing rectangle in the
drawing board. In the second step, click on a point on the top face of
the prism will add a prism to the drawing board, whose base is on the
guide-plane.

8.4.11 Pyramid

When clicked, a dialog box appears asking number of sides of the base of
the pyramid. The number of sides remain fixed for drawing subsequent
prisms. To change them, deactivate and reactivate ‘Pyramid’ button.

The pyramid is drawn in two steps. First, a ‘regular’ polygon at
the base of the pyramid is drawn by successively click on a corner and
a diagonally opposite corner of the circumscribing rectangle in the
drawing board. In the second step, click on a point at the apex will add
the pyramid to the drawing board, whose base is on the guide-plane.

8.4.12 Convex Hull

When active, successively click on a consecutive corners of the polyhe-
dron. Double-click one all the points are clicked. A convex hull of all
the added points will be constructed and added to the drawing board.

8.4.13 Convex Hull From File

When clicked, a dialog box requesting file name of the *.csv file open
up. The *.csv file contains x, y, z coordinates of the points as comma
separated list, one point per line. Thus, the csv file is a N x 3 table.
A convex hull of these points is constructed and added to the drawing
board.

8.4.14 From Last Selected

Select any shape or its face or edge. After that, click ‘From Last
Selected’. The selected shape is added to the structure as a new shape.

90 CHAPTER 8. GUI

SIS WA Create Me
Region ~
Mesh Refinement r
Contact
Doping Definition i

Figure 8.6: ‘Set Shape As..” menu.

8.4.15 Load STL/BREP/IGES Files

Shapes stored in STL, BREP or IGES files are loaded and added to
the structure.

8.5 Set Shape As...

‘Set Shape As..” menu on the menu-bar enables creation of Regions,
MeshDefs, Contacts, and DopingDefs. It lists the following ‘items’
on click (see Fig. [8.6)).

Before creating any of the above entities, one or more shapes must
be selected by using ‘Select Shapes’ button.

8.5.1 Region

Clicking ‘Region’ opens a dialog box which requests additional param-
eters including material to define the region. Notice, that the names
of selected RefWins are listed as drop-down list in the dialog box. You
can highlight each RefWin (for your information) by selecting it in the
drop-down list. Once the additional parameters are set, click to
add the region to the structure.

8.5.2 Mesh Refinement

Clicking ‘Mesh Refinement’ opens a dialog box which requests ad-
ditional parameters to define the quadtree/octtree mesh refinement.

8.5. SET SHAPE AS... 91

Set Region &

Reg. Name: Regl
Material: Silicon
RefWins: sh.0
Max. area of elements
Bulk: 01
Interface: 0.05
Doping Refinement Params:
Doping Gradient:
Max. value
Min. value
Element area constraint for:
Max. grad.
Min. grad.

®@Cancel oK

Figure 8.7: The dialog box opening up after clicking ‘Region’ is shown
above.

Figure 8.8: The dialog box opening up after clicking ‘Mesh Refinement’
is shown below.

92 CHAPTER 8. GUI

Figure 8.9: The dialog box opening up after clicking ‘Contact’ is
shown below.

Set Doping Definition &

Figure 8.10: The dialog box opening up after clicking ‘Doping
Definition’ is shown below.

Notice, that the names of selected RefWins are listed as drop-down
list in the dialog box. Once the additional parameters are set, click
to add the mesh refinement to the structure.

8.5.3 Contact

Clicking ‘Contact’ opens a dialog box which requests additional param-
eters to define the contact. Notice, that the names of selected RefWins
are listed as drop-down list in the dialog box. You can highlight each
RefWin (for your information) by selecting it in the drop-down list.
Once the additional parameters are set, click to add the mesh
refinement to the structure.

8.6. CREATE MESH 93

Create Mesh

Quad-/Oct-tree s
Triangle/CGAL
TQMesh/TetGen

Figure 8.11: ‘Create Mesh’ menu.

8.5.4 Doping Definition

Clicking ‘Doping Definition’ opens a dialog box which requests addi-
tional parameters to define the doping definition. Once the additional
parameters are set, click to add the doping definition to the
structure.

8.6 Create Mesh

‘Create Mesh’ menu on the menu-bar enables creation of QuadTree/OctTree
or Triangle/TetGen or Tensor mesh. It lists the following ‘items’ on

click (see Fig. [3.13)).

o Tensor: Create a tensor-mesh. It is enabled when meshergui
for tensor structures is opened.

o QuadTree or OctTree : Create a FEM-mesh using quadtree (2D
structures) or octtree (3D structures) based meshers.

e Triangle or TetGen : Create a FEM-mesh using Triangle mesher
(2D structures) or TetGen mesher (3D structure).

On successful meshing, generated mesh is displayed on the drawing
board. You can toggle the view to hide mesh and display the device
structure by clicking on .

In the next part, functionalities of the tabs on the side-pane are
described.

94 CHAPTER 8. GUI

Shapes

Shapes Display Order: Move Up Move Down Delete
3D Shapes Regions Mesh Doping Contacts

Id Name Material Show/Hide

Figure 8.12: ‘Shapes’ tab in the side-pane.

8.7 Shapes-Tab

All the RefWins (called shapes in this context), Regions, MeshDefs,
DopingDefs, and Contacts created by the structure generator are
listed in each of the tabs here row-wise. Notice, that fourth column in
each of these tabs has a header named ‘Show/Hide’. Check-boxes cor-
responding to each of the entities are listed in this column. Unchecking
(checking) the checkbox hides (shows) the shape corresponding to this
entity.

To show or hide all the Regions, click the header. It toggles display
state of all the shapes. Similarly, all the MeshDefs, DopingDefs, and
Contacts, can be toggled by clicking on the header.

Order of the regions listed in the tab is important. Regions listed
below in the list are subtracted from those listed above. Same rule is
applied for the MeshDefs, DopingDefs, and Contacts. Selected entity

in the list can be moved up or down by | Move Up | and | Move Down

buttons, respectively. Selected entity can be deleted by using
button.

8.8. GDS LAYOUT TO STRUCTURE 95

GDS Layout To Structure

Active GDS File: v
Y-intercept: Thickness dY:

Mask X-min: -1E3 Mask X-span dX: 2E3

Mask Z-min: -1E3 Mask Z-span dZ: 2E3

Create RefWin From Selected Layer

Figure 8.13: ‘GDS Layout To Structure’ tab in the side-pane.

8.8 GDS Layout To Structure

Chip layouts in GDS format can be used to create shapes. A GDS
layout file is imported by clicking | File —>‘ Import GDS File ‘ All the
GDS files imported in this session are listed in the drop-down box of
Active GDS File. All the layers defined in the selected GDS file are
listed in this tab. Checkbox in each row selects whether the given
structure is visible or not.

A new shape is created from the selected layer specifying the
parameters Y intercept, Thickness, mask Xmin, dX, Zmin, dZ. After

adding correct input parameters, click on the ‘ Create RefWin ‘ button.
A new shape will be created. Please refer to Chapter [7] to know more
about the parameters and their use.

Appendix A

Notation and Acronyms

Acronyms

BPM Beam Propagation Method
FDTD Finite Difference Time Domain
NEGF Non-equilibrium Green’s Function

QT Quantum Transport

97

Bibliography

99

	1 Introduction
	1.1 Features
	1.2 Installation
	1.3 Licensing
	1.3.1 Purchasing the licenses
	1.3.2 Installation of SemiVi-activator
	1.3.3 License activation

	2 Device Generation File Structure
	2.1 Config File structure
	2.1.1 Device section
	2.1.2 RefWin objects
	2.1.3 Region objects
	2.1.4 Doping objects
	2.1.5 Contact objects
	2.1.6 MeshDef objects

	2.2 Generating a device
	2.3 Modifying the device
	2.4 Generating a 3D device

	3 Device Generation with Python Script
	3.1 Python Script File structure
	3.1.1 Initialization
	3.1.2 Defining RefWin
	3.1.3 Defining Region
	3.1.4 Defining Doping Profile
	3.1.5 Defining Contacts
	3.1.6 Defining Meshing rules

	3.2 Generating a device
	3.3 Modifying the device

	4 Configuring RefWin Object
	4.1 1D segment
	4.2 2D shapes
	4.2.1 Rectangle
	4.2.2 Polygon
	4.2.3 Circle
	4.2.4 Ellipse

	4.3 3D shapes
	4.3.1 Cuboid
	4.3.2 Sphere
	4.3.3 Ellipsoid
	4.3.4 Cylinder or Cone
	4.3.5 Convex hull
	4.3.6 Polyhedron

	4.4 Python Interface
	4.4.1 Position object
	4.4.2 Add RefWin to the device
	4.4.3 Create RefWin Object

	4.5 Modifying RefWin object
	4.5.1 General
	4.5.2 Shape Transformation
	4.5.3 Boolean operation
	4.5.4 2D/3D shape editing
	4.5.5 2D to 3D shape conversion
	4.5.6 Trapezoidal 3D etch
	4.5.7 Saving the shape

	5 Configuring Regions, Contacts, and Doping
	5.1 Region objects
	5.1.1 Python script interface

	5.2 Contact objects
	5.2.1 Thermal Contact
	5.2.2 Python script interface

	5.3 Doping profiles
	5.3.1 Constant doping profile
	5.3.2 Gaussian doping profile
	5.3.3 Exponential doping profile
	5.3.4 Linear doping profile
	5.3.5 Analytic doping profile
	5.3.6 Python script interface

	5.4 Editing device
	5.4.1 Mirror device
	5.4.2 Translate device
	5.4.3 Stretch device

	5.5 Save and Load
	5.5.1 Structure - save and load STEP
	5.5.2 Regions - save and load
	5.5.3 Doping Definitions - save and load
	5.5.4 Mesh Definitions - save and load
	5.5.5 Contact Definitions - save and load
	5.5.6 RefWins - save and load

	6 Configuring Mesh Generation
	6.1 Mesh definition FEM or tensor-mesh
	6.2 Mesh settings in Triangle or Tetrahedral mesh
	6.3 Meshing Options
	6.3.1 Tensor Meshing
	6.3.2 FEM Meshing
	6.3.3 Triangle Mesh Engine
	6.3.4 NetGen Mesh Engine

	6.4 Python interface - mesh generation
	6.4.1 Create mesh
	6.4.2 NetGen mesh settings
	6.4.3 Clear mesh
	6.4.4 Clear structure and mesh

	6.5 Python interface - mesh data retrieval
	6.5.1 Get region information
	6.5.2 Tensor mesh-grid spacing
	6.5.3 Tensor mesh vertex id
	6.5.4 FEM mesh vertex coordinates
	6.5.5 FEM mesh element list
	6.5.6 Voronoi volume

	7 Structure Generation from GDS Layout files
	7.1 Config File
	7.2 GDSLayerDef object
	7.2.1 Layer object

	7.3 Region object
	7.4 DopingDef object

	8 Graphical User-Interface
	8.1 File-menu
	8.1.1 New
	8.1.2 Open
	8.1.3 Import GDS File
	8.1.4 Save
	8.1.5 Save As
	8.1.6 Save As STEP
	8.1.7 Export Python Script
	8.1.8 Save Mesh

	8.2 View-menu
	8.2.1 Zoom-to-fit
	8.2.2 3D
	8.2.3 Ex
	8.2.4 Ruler
	8.2.5 Mesh

	8.3 Edit-menu
	8.3.1 Move or Copy
	8.3.2 Delete
	8.3.3 Flip
	8.3.4 Select shapes
	8.3.5 Boolean operations - Unite, Intersect, and Subtract
	8.3.6 Round Selected or Chamfer Selected
	8.3.7 Stretch
	8.3.8 Offset
	8.3.9 Prism from 2D Shape
	8.3.10 Pyramid from 2D Shape
	8.3.11 Revolve 2D shape

	8.4 Add-Shape-menu
	8.4.1 Segment
	8.4.2 Axis-aligned `Rectangle'
	8.4.3 Circle
	8.4.4 Regular Polygon
	8.4.5 Polygon
	8.4.6 Cuboid
	8.4.7 Cylinder
	8.4.8 Cone
	8.4.9 Sphere/Ellipsoid
	8.4.10 Prism
	8.4.11 Pyramid
	8.4.12 Convex Hull
	8.4.13 Convex Hull From File
	8.4.14 From Last Selected
	8.4.15 Load STL/BREP/IGES Files

	8.5 Set Shape As...
	8.5.1 Region
	8.5.2 Mesh Refinement
	8.5.3 Contact
	8.5.4 Doping Definition

	8.6 Create Mesh
	8.7 Shapes-Tab
	8.8 GDS Layout To Structure

	A Notation and Acronyms
	Acronyms

