
Fine-tuning Large Language Models (LLMs) for
AI-assisted Circuit Design and Simulation

Abstract—Circuit design and simulation constitutes the core
task of any embedded-system development project. A circuit
netlist file is fed to the circuit simulator for virtual prototyping
and optimization tasks. In this work, a large set of circuit
netlists in SPICE format are used to fine-tune existing large
language models (LLMs) for generating circuit netlists from the
user prompt. The re-trained LLMs are deployed at the back-
end of the web-interface to generate the circuit netlists from
the user-prompt. These circuit designs need to be imported to
the simulator for further optimization. For that purpose, a user-
friendly web-interface is developed using Django-framework with
Ajax routines. Also, we have developed a user-friendly interface
with our custom circuit simulator. The design goals of this circuit
simulator and the interface with the LLM-based netlist generator
are discussed.

Index Terms—Circuit design and simulation, Large language
models, natural language processing, AI-assisted netlist genera-
tion, Django-framework, AJAX.

I. INTRODUCTION

Since the release of GPT 3.0 model by OpenAI in late
2020 [1], generative pre-trained transformer (GPT) based large
language models (LLMs) have taken center-stage in the public
discourse. This can be attributed partly to the capability of
these models to accept natural language prompts as input and
respond by giving articulate answers. Precision and humane
nature of the answers has significantly improved over past
years. Over the years, other LLMs have been developed by
some of the major companies in software industry to enter
into this rapidly evolving field.

LLM-based chat interface can also be viewed as a novel
Human-Computer-Interface (HCI). It opens a new possibility
in which a ‘common-man’ can also use specialized software
without any prior training. Development of LLM-based digital
design agents has been explored by [2]. Also, LLM-based
design of specialized analog circuits has been shown by [3].

Historically, electronic circuit design has been a labor-
intensive work. Due to the complexities involved, only a set
of knowledgeable and skilled individuals were suitable for
this task. However, the rapid penetration of electronic gadgets
in daily life has opened a new field of application-specific
gadgets. To serve this field, it is necessary to develop a rapid
and reliable circuit designer from a generic user-prompt. The
goal of our study is to retrain LLMs to generate circuit netlists
from user prompts.

Since the existing users are most familiar with GUI-based
interface, it is perhaps more suitable to develop LLM-based
HCI in tandem with the existing GUI-based interface. Thus,
our next goal is to find a suitable combination of LLM-based
HCI and the GUI which can work together.

Goals of the paper are to,
1) Retrain or fine-tune various open-source LLMs to gen-

erate spice-based circuit netlists as per user prompts.
Determine which LLM is more suitable for this purpose.

2) Develop an interface such that, both GUI and LLM-
based netlist generator work in tandem to deliver the
best of both worlds.

The paper is organized as follows. The step of fine-tuning
the existing open-source LLMs is described in Section II.
Inference, i.e. netlist generation using fine-tuned LLMs is
discussed in Section III. Section IV and Section V explain,
respectively, the web-interface and the LLM-interface with
our circuit simulator CircuitDraw to assist designers in
generating netlists.

II. FINE-TUNING THE LLMS

We used the following Python libraries to fine-tune the
LLMs.

• transformers : Contains a class to load weights of
open-source LLM - AutoModelForCausalLM . Also,
provides tokenizer class which tokenizes input text.

• bitsandbytes : 4-bin and 8-bit quantization library. It
converts 32-bit floating point weights into their 4-bit or 8-
bit counterparts for faster and low-memory computation.

• LoRa : A parameter-efficient fine-tuning method for
LLMs. It enables adaptation of a pre-trained LLM for
a specific task with much lower computational overhead.

• SFTTrainer : Supervised Fine-Tuning (SFT) step is
a common step in fine-tuning the models with field-
specific data. We use SFTTrainer class for fine-tuning
the models.

Effectiveness of a LLM depends largely on the the training
dataset used for fine-tuning the models. We use the following
two circuit netlist datasets-

• Vrindarani dataset - 106 netlists and their text description.
[4]

• MasalaChai dataset - nearly 6000 netlists and their text
description. [5]

The above datasets contain a list of key−value pairs. key is
the textual description of the circuit, whereas value contains
the circuit in SPICE netlist format. We convert these key-value
pairs into a string of tokens in two steps.

1) Convert them to a python list of strings. Each string
has the following format - <s> [INST] <<SYS>>
You are circuit designer. <</SYS>> Design the circuit
from the following description. key [/INST] value



TABLE I
NETLISTS GENERATED BY THE SELECTED FOUR VARIANTS OF LLMS FOR THE PROMPTS IN THE FIRST COLUMN.

Prompts CodeLlama-13B CodeLlama-7B
8-bit 4-bit 8-bit 4-bit

Generate a resistive volt-
age divider circuit. It con-
tains two resistors in se-
ries. Middle net of the re-
sistors is an output.

V1 1 0 DC 5V
R1 1 2 1k
R2 2 3 1k
R3 2 0 1k
.END

V1 1 0 DC 5V
R1 1 2 1k
R2 2 3 1k
R3 2 0 1k
Vout 3 0 DC 0V
.end

V1 1 0 DC 5V
R1 1 2 1k
R2 2 3 2k
R3 3 0 3k
.END

V1 1 0 DC 5V
R1 1 2 1k
R2 2 3 2k
R3 3 0 3k
.END

Generate an inductor
based low pass filter. Do
not use a capacitor.

Vin 1 0 DC 0
L1 1 2 100uH
R1 2 0 10k
Vout 2 0 DC 0
.end

Vin 1 0 DC 0
L1 1 2 1uH
L2 2 3 1uH
L3 3 4 1uH
L4 4 0 1uH
.end

V1 1 0 DC 0
L1 1 2 100u
R1 2 3 10k
V2 3 0 DC 0
.END

V1 1 0 DC 0
L1 1 2 100u
R1 2 3 10k
V2 3 0 DC 0
.END

Generate a band pass filter
netlist. It contains a resis-
tor, a capacitor, and an in-
ductor, all in series.

V1 3 0 DC 0
R1 3 2 1k
C1 2 0 1u
L1 2 0 1m
.END

R1 2 3 1k
C1 3 4 1u
L1 4 0 1m
.END

V1 1 0 DC 0
R1 1 2 1k
C1 2 3 1u
L1 3 0 1u
.END

V1 1 0 DC 0
R1 1 2 1k
C1 2 3 1u
L1 3 0 1m
.END

Generate a amplifier using
two stage BJT. Use BJT
model of N40004.

VCC 3 0 DC 15V
Vin 1 0 AC 1V
R1 3 2 1k
Q1 2 1 4 N40004
Q2 3 2 4 N40004
.model N40004 NPN

(IS=1E-14 BF
=100)

.end

VCC 3 0 DC 15V
Vin 1 0 AC 1V
R1 3 2 1k
R2 2 0 1k
Q1 2 1 0 NPN
.model NPN NPN (IS

=1E-14 BF
=100)

.end

VCC 3 0 DC 15V
Vin 1 0 DC 0V
R1 1 2 1k
R2 2 3 1k
Q1 2 2 0 N40004
.model N40004 NPN
.end

Q1 2 3 4 N40004
Q2 2 2 5 N40004
VCC 2 0 DC 15V
VEE 5 0 DC -15V
* End of Netlist

</s>. Here, key and value are the circuit description
and the netlist, respectively.

2) Each of these strings is passed through the tokenizer to
create numeric tokens.

In training phase, the above generated tokes are passed to
the SFTTrainer to train the LLM. In the training phase,
weights of the LLM are adjusted such that when the key is
passed to the LLM, the corresponding value is returned.

“CodeLlama” LLM variant of Llama-models [6] is designed
for code generation and analysis. Therefore, we believe it
would be more suited for the structured text generation, such
as netlists. We chose the two variants of “CodeLlama” LLM
for fine-tuning.

• CodeLlama-7b-Instruct-hf : Contain 7 billion training
parameters.

• CodeLlama-13b-Instruct-hf : Contain 13 billion training
parameters.

Training all the parameters would be computationally inten-
sive. Also, training them on the small size of the dataset
would invariably lead to over-fitting of the model. To avoid
it, only a sub-set of training parameters is used. The LoRA

(low-rank-adaptation) module selects this sub-set of most
relevant parameters in the LLM. We used the following LoRA
modules - gate_proj, down_proj, up_proj, q_proj,
v_proj, k_proj, o_proj. The chosen modules train 2.3%
parameters out of 7 billion parameters of ‘CodeLlama-7b’
LLM. In case of ‘CodeLlama-13b’ LLM, the above modules
select 1.8% parameters for training purpose. Value of some of
the most relevant hyper-parameter used for the training step
are given in Table II.

Using the LLM parameters at a lower precision is often
sufficient to generate the desired output text. Using low
precision parameters is also time-efficient and energy-efficient,
when it comes to generating the netlists. In the training step,
we have lowered precision of the LLM parameters by using
bitsandbytes library for 4-bit and 8-bit quantization. As
expected, 8-bit quantization uses higher precision than 4-bit
quantization. Our aim is to study whether this difference in
precision affects the netlist-generation quality.

Due to the high computational load of the LLM training
step, training is performed by making use of hardware-
accelerated (graphics-card) transformers library. Nvidia



TABLE II
PARAMETERS USED FOR FINE-TUNING THE LLM

Module Parameter value

SFT trainer

Training Epoch 4
batch size 4
optimizer paged adamw 32bit

learning rate 2× 10−4

weight decay 1× 10−3

LoRA
alpha 16

r 64
dropout 0.1

TABLE III
TIME AND ERROR IN FINE-TUNING THE LLMS ON THE NVIDIA GTX-3090

LLM Quantization Training time Training error

CodeLlama-7b 4-bit 5 Hr 30 min 0.649
8-bit 6 Hr 0.65

CodeLlama-13b 4-bit 3 Hr 8 min 0.671
8-bit 3 Hr 27 min 0.6739

graphics card “GTX3090” is chosen for the training step, due
to 24Gb of video-RAM available on it. Additionally, presence
of bfloat16 based computational units on this graphics card
allow faster computation (albeit at the cost of lower precision).

The LLMs in the list II were trained using the same set of
parameters and on the same datasets to perform comparative
analysis of their performance. Training time and the training
error obtained at the end of the training steps are given in
Table III.

III. INFERENCE USING FINE-TUNED LLMS

After the fine-tuning step, the fine-tuned LLMs were used
to generate netlists by using a number of prompts. Same
parameters as those used for training we also used for infer-
ence generation. We set the maximum number of additional
characters to 128. The prompts were written in a way that
models the user behaviour. Some of the prompts are given
in the first column of Table I. In the table, the prompts are
ordered as per the complexity of the desired circuit netlists.
The generated netlists by each of the four variants of LLMs
(CodeLlama 7B or 13B with 4-bit or 8-bit quantization) are
shown in the second column of Table I. In total, 30 different
prompts were passed to the LLMs to generate the netlists.
We used the following criteria for testing usefulness of the
generated netlists.

• Correctness of the spice format of the netlist,
• How closely the generated netlist resembles to the desired

one,
• Whether the users can generate the desired circuit faster

if they modify the generated netlist, instead of creating
the desired netlist from scratch.

Generated netlists by each of the four variants of LLMs
(CodeLlama 7B or 13B with 4-bit or 8-bit quantization) were
tested per the above listed criteria. Our observations after
testing the netlists are as follows.

1) All the variants generated netlists accurately as per spice
format. The LLMs were able to reproduce the correct

TABLE IV
NETLISTS GENERATED BY CODELLAMA-13B-8BIT FINE-TUNED MODEL.

Prompt CodeLlama-13B-8bit
Generate an electric
three phase motor
driver circuit. It
contains three
MOSFET pairs.
Output of each pair
is connected to the
motor.

V1 1 0 DC 12V
V2 3 0 DC 12V
V3 5 0 DC 12V
M1 2 1 4 4 NMOS
M2 2 3 4 4 NMOS
M3 2 5 4 4 NMOS
R1 2 4 1k
.END

Create a full-bridge
rectifier circuit which
contains four diodes.
Input is at 1 and out-
put is at 3. Diode 1 is
connected from 1 to 2.
Diode 2 is from 2 to
3. Diode 3 is from 1
to 4. Diode 4 is from
4 to 3.

V1 1 0 DC 0
D1 1 2 Dmodel
D2 2 3 Dmodel
D3 1 4 Dmodel
D4 4 3 Dmodel
R1 2 3 1k
.model Dmodel D
.end

Generate an analog
current mirror circuit.
This circuit acts as a
driver to another cur-
rent sensor.

VDD 2 0 DC VDD
IREF 2 3 DC IREF
R1 2 3 R1_value
R2 3 4 R2_value
M1 3 3 0 0 NMOS_model
M2 4 3 0 0 NMOS_model
.model NMOS_model NMOS (Level

=1)
.end

number of pins for for each of the components (e.g.
2-pins for R, L, and C, 4-pins for MOSFETs).

2) Among the four variants of the LLMs, CodeLlama 13B
8-bit quantization gave the most relevant answers, which
resembled most to the desired netlist. ‘CodeLlama-13B’
has 13 billion parameters as opposed to ‘7B’. Also,
8-bit quantization uses these parameters with a higher
precision, as opposed to 4-bit quantization. Therefore,
better results are expected using ‘CodeLlama-13B-8bit’
model.

3) The LLMs can not set correct component values. For
example, when asked to generate a passive RLC filter
circuit of certain cut-off frequency, LLMs could not
provide correct values for R, L, and C. Even the best
of the LLMs confused between low-pass, band-pass, or
high-pass filters!

4) LLMs could not generate netlists of some of the more
complex circuits, e.g. fly-back-converter, buck/boost-
converts. This is attributed to the absence of these
complex circuits in training datasets.

5) We believe that, fine-tuned CodeLlama-13B with 8-bit
can be useful for generating initial netlist, which can be
further modified by the users.

Some more netlists generated by the best LLM among the
four - CodeLlama 13B 8-bit quantization - are presented in



Fig. 1. Block diagram of the web-interface for netlist generation developed
using Django-framework and AJAX routines.

Table IV along with the prompts used to generate them. Some
of the complex circuits such as motor-drive circuit, were also
generated fairly accurately. This shows capacity of the LLMs.

IV. WEB INTERFACE FOR NETLIST GENERATION

Netlist generation is performed using the trained LLM using
Python-based ‘transformers’. The required high-end hardware
acceleration is typically available only on a few machines.
A ‘client-server setup’ allows for user-friendly hosting of the
LLM on the server for netlist generation, and its use by
multiple clients using the web-interface. Primary task of the
web-interface is to receive natural language prompts from the
users and provide generated netlists. For this task, we have
developed Django server [7] which works as follows. User
can type the prompt in the text-box displayed on the web-
page. As soon as the user submits text prompt by clicking
Send , Ajax script [8] runs at the client-side and collects all

the previous user-prompts and server-responses. The collected
prompts-response pairs are sent to Django server. The server
submits the user-prompt to the LLM. The netlist generator
generates spice-netlist and returns it to the client-side Ajax
script for display. Block-diagram of the entire web-interface
is shown in Fig. 1. Web interface is shown in Fig. 2.

A check-box Don’t use history is displayed below the
input-prompt box. If the check-box is un-checked, the previous
prompt-response pairs are also sent to the LLM for ‘context’.
This ‘context’ allows for an interactive netlist generation. If
the check-box is checked, the previous prompt-response pairs
are ignored, and the circuit is generated solely from current
user-prompt.

A. Circuit image auto-generation

It is often cumbersome to visualize the circuit by reading
the netlist. To assist users with visualization, the server also
renders circuit image of the netlist in svg format. After
generating the netlist, we run ElkJs-based netlist-to-svg image
converter on the server to generate the circuit svg image (see
Fig. 2). It is then returned to the client-side Ajax script, which
adds it to the HTML page. In this way, the svg image rendered
in the chat window. We believe, that the svg image rendering
would enable quick visualization of the circuit.

Fig. 2. Chat-like web-interface to generate netlist from the user prompts. An
example prompt is shown in the figure. For visualization of the circuit, an svg
image of the circuit is also created from the generated netlist and displayed
below the chat.

V. CIRCUIT SIMULATOR - LLM INTERFACE

A. Circuit Simulator GUI

GUI of a circuit drawing and simulation tool
CircuitDraw by SemiVi [9] is shown in Fig. 3. The
GUI window which consists of a ‘Menu-bar’, a ‘Tool-bar’, a
circuit drawing board, and a side-pane. It enables interactive
generation of electronic circuits and the circuit simulations
using the CircuitSolver tool. The side-pane in the GUI
named “Virtual AI Assistant” contains a web-engine for
rendering the HTML page of the netlist generator. Users
can write the prompt describing the circuit in the input-box
and click send. The prompt along with the LLM-generated
netlist are displayed on the webpage. If the netlist is a valid
netlist, then SVG image of the netlist is also displayed below
the netlist.

B. Interactive Circuit Generation

As seen in Fig. 3, the LLM-generated-netlist returned by
the server is displayed in the side-pane along with the svg



Fig. 3. CircuitDraw GUI together with the web-interface for LLM-based netlist-generator embedded in it.

image of the circuit. This netlist can act as a starting point
for the subsequent circuit modifications. To refine the given
netlist and adapt it for user-specific requirements, the netlist
must be imported to the drawing board of ‘CircuitDraw’ tool.

The netlist is imported to the drawing board by clicking
on Import circuit . Fig. 3 shows the circuit drawing board
after clicking ‘Import Circuit’. Once imported, the user can
move the circuit components, add new components, change
the component parameters, or add relevant analyses. In this
way, the LLM-based netlist generation together with the
CircuitDraw interface enables rapid circuit generation and
prototyping.

VI. CONCLUSIONS

We have fine-tuned open-source LLMs, in particular,
CodeLlama-7b and CodeLlama-13b to perform netlist genera-
tion, when a text prompt is submitted by the circuit designer.
Two techniques, 4-bit and 8-bit quantization, were used for
training the LLMs. The LLMs were successfully re-trained on
the dataset of nearly 6100 netlist-text description pairs. After
training, various text prompts were passed to generate netlists
and assess their usefulness. ‘CodeLlama-13b model’ with 8-bit
quantization was found to be more useful for netlist generation.

A chat-like web-interface using Django-framework and
Ajax is developed to enable users submit text prompts and
generate desired netlists. Also, the web-interface is embedded

in the circuit drawing and simulation tool CircuitDraw for
rapid circuit generation and simulation.

REFERENCES

[1] T. Brown et al, “Language Models are Few-Shot Learners”, Open AI,
ArXiv, 2020, DOI: 10.48550/arXiv.2005.14165.

[2] C. Xiong et al.,“HLSPilot: LLM-based High-Level Synthesis”,
IEEE/ACM ICCAD’24, Article no. 226, pp. 1-9. 2024.

[3] J. Shen et al., “Atelier: An Automated Analog Circuit Design Framework
via Multiple Large Language Model-Based Agents,” in IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
doi: 10.1109/TCAD.2025.3573228.

[4] Vrindarani/netlistgen, Huggingface.
[5] J. Bhandari, V. Bhat, Y. He, H. Rahmani, S. Garg, and R. Karri, “Masala-

CHAI: A Large-Scale SPICE Netlist Dataset for Analog Circuits by
Harnessing AI,” ArXiv, DOI: 10.48550/arXiv.2411.14299, 2025.

[6] H. Touvron et al, “LLaMA: Open and Efficient Foundation Language
Models”, arXiv, 2023. doi: 10.48550/arXiv.2302.13971.

[7] Django Software Foundation, 2019. Django, Available at:
https://djangoproject.com.

[8] Ajax Frameworks, Apress, pp. 135–146, 2006. doi: 10.1007/978-1-4302-
0183-0 7.

[9] Circuit Solver User Guide, SemiVi LLC, Switzerland, 2025.


