Study of Hexagonal Photo-diode for Efficient Side-coupling to Silicon Wave-guide

Saurabh Sant, Dr. sc. ETH saurabh.sant@semivi.ch

September 18, 2025

Outline

Introduction

Whispering Gallery Mode Photodiode

FDTD Simulation Results

4 Conclusions

- Introduction
- Whispering Gallery Mode Photodiode
- FDTD Simulation Results
- Conclusions

- High-speed, low power data communication on-chip as well as off-chip → Optical interconnects.
- Micro-scale on-chip receivers e.g. photo-detectors → Lower area footprint, power consumption.
- Scaling down conventional photo-detectors: smaller width for light trapping → lower sensitivity!
- ullet Whispering Gallery Mode (WGM) structures ullet Efficient light trapping.
- $\bullet \ \, \text{Micro-scale Silicon waveguide} + \text{WGM photo-diode} \rightarrow \text{Ideal setup for Si photonics}. \\$

Saurabh Sant (SemiVi LLC) WGM Photodiode September 18, 2025

Whispering Gallery Structures

(a) St. Paul's Cathedral, London

(b) Gol Ghumez, Bijapur, India

(c) Total Internal Reflection

Figure: Whispering Gallery Structures

CXII. The Problem of the Whispering Gallery. By Lord Rayleigh, O.M., F.R.S.*

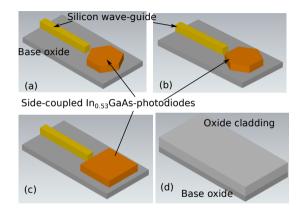
THE phenomena of the whispering gallery, of which there is a good and accessible example in St. Paul's cathedral, indicate that sonorous vibrations have a tendency to cling to a concave surface. They may be reproduced upon a molerate scale by the use of sounds of very high pitch (wave-length=2 cm.), such as are excited by a birdcall, the percipient being a high pressure sensitive fame †. Especially rearriskable is the narrowness of the obstacle, held

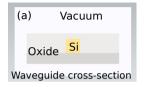
Figure: Study of Whispering Gallery by Lord Rayleigh

- Working principle of WGM Total Internal Reflection (TER) at each incidence.
- Fig. 5 shows WG structures for sound waves.
- Can WG principle be used to 'retain' incident photons longer in the photo-diodes?

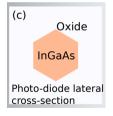
- Introduction
- Whispering Gallery Mode Photodiode
- FDTD Simulation Results
- Conclusions

Proposed Structure - WGM Photodiode




Figure: Hexagonal $In_{0.53}$ GaAs photo-diode at the end of Si waveguide, with two configurations (a) and (b). (c) rectangular photo-diode coupled to the waveguide at the end. (d) Waveguide embedded in oxide cladding.

- Hexagonal structure → TER at all the faces → Longer retention of light → higher sensitivity.
- Hexagonal disc of photodiode (PD) end-coupled to Silicon waveguide is ideal!
- TER efficient at certain angles of incidence → optimization of disc rotation-angle w.r.t. the waveguide direction.
- Compared two photo-diode concepts traditional rectangular stripe, and proposed hexagonal WGM structures
- Structures generated using "Structure Generator and Mesher" by SemiVi.



Saurabh Sant (SemiVi LLC) WGM Photodiode September 18, 2025 7/14

Photodiode Geometry Determination

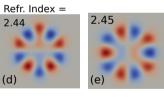


Figure: (a) Cross-section of the waveguide and (b) Modal field in it. (c) Lateral cross-section of the hexagonal InGaAs disc. (d) and (e) Whispering gallery modes supported by it.

- Si waveguide cross-section optimized for compactness and mode-confinement. Dimension: 260nm × 260nm
- Effective index of Si WG determined by mode calculations of the vertical cross-section.
- Similarly, effective index of WGM modes calculated by mode calculations of the lateral cross-section.
- For optimal coupling, side-length of the regular hexagonal InGaAs disc is optimized, such that effective indices of Si WG and WGM modes are close.
- Mode calculations performed using "Mode Solver" by SemiVi.

FDTD Simulation Setup

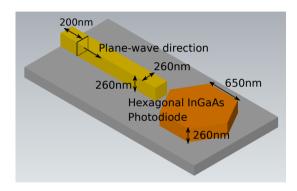
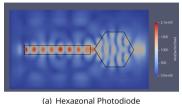
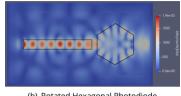
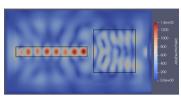


Figure: Hexagonal $In_{0.53}$ GaAs photo-diode at the end of Si waveguide. Various dimensions are shown in the figure.

- Uniform grid-spacing of 20nm along x,y,z axes. Grid size: $92 \times 43 \times 45 = 178,020$ vertices.
- Uniform plane-wave source placed in the plane perpendicular to the waveguide 200nm away from the start.
 - Intensity 1000W,
 - Wavelength 1.35μ m,
 - Confined to the cross-section of the waveguide.
- CPML BCs active in last 10 layers at all the boundaries of the simulation domain. All the boundary layers located in the 'vacuum' padding.
- Hardware-accelerated "FDTD Solver" by SemiVi used for the simulations.
- Nvidia GPU 'RTX 3090' used (10k cuda cores).


Saurabh Sant (SemiVi LLC) WGM Photodiode September 18, 2025 9/14

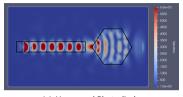

- Introduction
- Whispering Gallery Mode Photodiode
- FDTD Simulation Results
- Conclusions

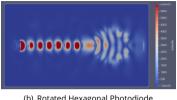


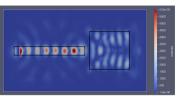
FDTD Simulation Results

(a) Hexagoriai Priotodiode

(b) Rotated Hexagonal Photodiode


(c) Rectangular Photodiode


Figure: Spatial distribution of abs. electric field in the horizontal cross-section at the middle of the waveguide.


- FDTD simulations performed for 200 fsec or 8994 time-steps.
- Magnitude Electric field $(|\vec{E}(\vec{r})|)$ is averaged over last 20 fsec.
- Averaged $|\vec{E}(\vec{r})|$ plotted in the horizontal cut-plane in the above figure.

- The field develops a peculiar pattern in the hexagonal structures similar to the WGMs.
- In the hexagonal structures, whispering-gallery mode is indeed actuated by the waveguide.
- In contrast, rectangular PD does not exhibit these modes!

Calculations of coupling strength

(a) Hexagonal Photodiode

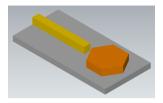
(b) Rotated Hexagonal Photodiode

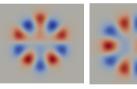
(c) Rectangular Photodiode

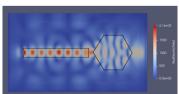
Figure: Spatial distribution of intensity in the horizontal cross-section at the middle of the waveguide.

- In a photo-diode, e-h generation is proportional to the light intensity.
- To estimate e-h generation, intensity is calculated in the photo-diode at time = 190 fsec.
- Intensity in the hexagonal structures is higher than that in the rectangular ones.

Structure	Int. abs. field V/m* μ m 3	Int. intensity W/m²* μ m³
WGM diode	245.5	413.18
Rotated WGM diode	221.77	378.87
Rect. diode	167.49	206.99


Hexagonal structure provides better coupling to the waveguide and better sensitivity.


- Introduction
- Whispering Gallery Mode Photodiode
- FDTD Simulation Results


4 Conclusions

Conclusions

- Studied the effect of hexagonal WGM structure on the coupling strength between Si wave-guide and In_{0.53}GaAs photodiode.
- Geometry of the WG and the hexagonal PD set such that the hexagonal structure exhibits WGM close to the refractive index of the waveguide.
- Hexagonal structure provides better coupling to the waveguide and better sensitivity compared to the rectangular structures.

Saurabh Sant (SemiVi LLC) WGM Photodiode September 18, 2025 14